You are currently browsing the category archive for the ‘BIM’ category.

 

clip_image001The past year I have written about PLM in the context of digital transformation, relevant for companies that deliver products to the market. Some years ago, I have advocated the value of a PLM infrastructure for EPC companies and Owners/Operators of a plant.

EPC stands for Engineering, Construction, and Procurement, a typical name for often large capital-intensive projects, executed by a consortium of companies. Together they create buildings, platforms, plants, infrastructure and more one-off deliveries, which will be under control of the Owner/Operator after going-live.

Some references:

2014 EPC related: The year the construction industry did not discover PLM

2013 Owner/Operators related: PLM for all industries?

As you can see from the dates, these posts are not the most recent posts. Meanwhile, EPC-based businesses are discovering the value of a PLM infrastructure. Main component for them is BIM (Building Information Model or Building Information Management) and they use cloud-based collaboration environments to be more cost-efficient. Slowly these companies are moving to a single repository of the data supporting multidisciplinary collaboration related to a BIM model to guarantee a continuity of data and better execution. I am positive about EPC companies that are discovering the value of PLM- It might be slightly different from classical product-selling companies, mainly because data ownership is different. In an EPC environment many companies are responsible for parts of the data and each of them keeps the real knowledge as IP (Intellectual Property) for themselves. They only “publish” deliverables. For companies that deliver products to the market, the OEM keeps responsibility for all relevant product information and h has a different strategy.

 

clip_image003I worked in the past with one of my peers, Bjorn Fidjeland (www.plmpartner.com) on PLM for EPCs and Owner/Operators. We share the same passion to bring PLM outside traditional industries. As Bjorn is now more active than I am in this domain, I recommend to read Bjorn´s posts on this topic. For example:

EPC related 2016: Handover to logistics and supply chain in capital projects

Owner/Operators 2015: Plant Information Management – Information Structures

Bjorn provides a lot of details, which are important as implementing PLM for EPCs or Owner/Operators requires different data structures. I wrote about these concepts in 2014 in two posts – PLM and/or SLM ?  post 1 and post 2. At that time not realizing the virtual twin was becoming popular.

PLM complementary to EAM

The last year I have explored these concepts together with (potential) Owner/Operators of a plant, where PLM would be complementary to their EAM system. In the world of Owner/Operators, Enterprise Asset Management (EAM) software is the major software these companies use. You find some of the major EAM players here.

You will discover that all these software suites are good for plant operations, but they all have a challenge to support data consistency and quality in particular when dealing with plant changes and efficient, high-quality  plant information management. Versioning and status management, typical PLM capabilities are often not there.

Owner/Operators have challenges with EAM environments as:

  • EAM systems are designed to support an as-operated environment, assuming all data it correct. Support for Maintenance, Repair or Overhaul projects is often rudimentary and depending on document-driven processes. The primary business process of these companies is producing continuously, such as, electricity or chemicals. Therefore typical engineering projects to change or enhance the main production process do not have the same financial focus.
  • A document-driven approach is the de facto standard common for these industries. Most of the time because the plant has been established through an EPC approach, which was 100 % document-driven due to the different disconnected disciplines/tools working at that time in the EPC project. As the asset information is stored and delivered in documents, most owners/operators keep the document-driven approach for future change projects.

Owners/operator can benefit significantly from a data-driven PLM system as complementary infrastructure to their EAM system. The PLM system will be the source for accurate asset information, manage the change and approvals for the assets and ultimately push the new released information to the EAM system. The PLM system will offer the full history an traceability of decisions made, important for regulatory bodies or insurance companies.

.A data-driven approach for asset information allows owners/operators to benefit from efficient processes, reducing strongly the amount of people required to process data (documents) or reducing the time for people working in maintenance and operations to search for data. I found a nice slide from IBM explaining the concept of PLM an EAM collaboration – see below:

clip_image005

The same benefits modern digital enterprises will have related to a data-driven approach will come available for owner/operators. Operational management is supported by the EAM system combined with real-time capabilities provided by a modern PLM systems to analyze, design and deliver changes to the plant without a costly data conversion process (e.g. compiling new documents) and disconnected processes.

Moving to a virtual twin

clip_image007Interesting enough the digital transformation is bringing the concepts of connecting engineering, manufacturing and operations together into an infrastructure of digital platforms interacting together. Where owners/operators historically do not focus on optimizing the engineering process to build and maintain their assets, in the “classical” industries companies were not really focusing on how products behaved in the field after they were delivered. With digital continuity (the digital thread) and IoT now these “classical” companies can connect to their products in the field. Their products become assets of information, and in case these companies change their business offering into leasing products and services, these assets become managed assets, like the assets owner/operators are managing.

The concept of a virtual twin (or digital twin – image proprietary of GE) , where a virtual model-based environment is linked to one or more real instances in operations, is the dream of all industries. Preparing, Simulating and verifying changes in a virtual world is so much more efficient and cheaper that is allows for higher quality of products and in the case of plant operators higher safety will be the number one topic.

Conclusion

What I have learned so far from plant owners/operators is that they are struggling to grasp a modern digital enterprise concept as their current environment is not model-based but document-driven. Starting with PLM to complement their EAM system could be a first step to understand the value and business benefits of digital continuity. It requires a new way of thinking which is not a commodity at this time. It will happen in the next 5 to 10 years. Expect it to be driven by the realization of virtual twins in the industry and further BIM maturity. The future is model-based !!!

p.s. I am happy to announce WordPress provided a new feature to my blog. In the side panel you can now choose your language (based on Google Translate) if you have difficulties with English. Enjoy !

myplmSorry guys, I am aware of the fact that the definition of PLM is very ambiguous. Every vendor, implementor and probably PLM consultant has a favorite definition. Just to illustrate this statement,  read Brain Soaper´s recent post: What are the top 5 things to know about PLM ?

Interesting Brian starts with stating the definition of PLM is priority #1, however as you can see from the comment session, it is all about having inside your company a common definition of PLM.

And now I start writing about digital PLM, again a definition. You might have read in my blog about classical PLM and modern PLM.

Classical PLM

classical PLMFor me, classical PLM is the way PLM has been implemented in the past 15 years, often as an extension of engineering with the purpose of centralizing and sharing information.

In particular for CAD data, classical PLM is focusing on managing files in a controlled way, through check-in and check-out mechanisms. On top of file management, classical PLM provides more data-driven functionality, like project management, process governance (workflows / approvals / ECx processes) and BOM management (to link to ERP).

Classical PLM can still bring great benefits to a company as time for searching, paper-based processes and data retyping in ERP can be avoided, leading to reuse and fewer errors. The ROI time for a classical PLM implementation lays between two years to three years; my observations from the past. This time can still vary a lot as not every company or implementor/vendor uses the ideal approach to implement PLM, due to cultural issues, wrong expectations or lack of experience from both parties.

The connotations I have with classical PLM are:
linear, rigid, mechanical,(old) automotive, previous century

Modern PLM = Digital PLM

InfoInContextModern PLM is based on the vision that all information should be managed and stored as data objects, not necessary in a single system. Still the PLM infrastructure, using structured and unstructured data, should give each user in the organization with almost real-time information in context of other relevant information.

My non-stop blog buddy Oleg recently wrote a post in that context: Data as a platform & future manufacturing intelligence. Oleg is nicely describing some of the benefits of a data-driven approach.

Accenture provides insight with their infographic related to Digital PLM. Read it here as it is very concise and gives you a quick impression what Digital PLM means for an organization. Here is my favorite part, showing the advantages.

accenture digital PLM

The substantial advantages from digital PLM are all coming from the fact that information is stored as data objects, all having their individual versions, relations and status. The advantage of data elements is that they are not locked in a document or specific file format. Information can flow to where or whom needed without translation.

The connotations I have with digital PLM are:
real-time, data continuity, flexible, software and future.

 

Still some caution:

Reported ROI numbers for digital PLM are significant larger than classical PLM and I observed some facets of that. Digital PLM is not yet established and requires a different type of workforce. See other blog post I wrote about this theme: Modern PLM brings Power to the People.

But what about digital PLM – where is the word digital relevant ?

ETO – model-based engineering

Where to focus first depends very much on your company´s core business process. Companies with an Engineering To Order (ETO) process will focus on delivering a single product to their customer and most of the time the product is becoming more like a system, interacting with the outside world.

Big challenges in ETO are to deliver the product as required, to coordinate all disciplines preferable in a parallel and real-time manner – in time – on budget. Here a virtual model that can be accessed and shared with all stakeholders should be the core. The construction industry is introducing BIM for this purpose (a modern version of DMU). The virtual model allows the company to measure progress, to analyze and simulate alternatives without spending money for prototypes. In the ideal world engineering and simulation are done on the same model, not losing time and quality on data translations and iterations.

The virtual model linked to requirements, functions and the logical definition allows virtual testing – so much cheaper and faster and therefore cost efficient. Of course this approach requires a change in how people work together, which is characteristic for any digital business. Breakdown the silos.

Typical industries using the ETO model: Construction, Energy, Offshore, Shipbuilding, Special Equipment

 

CTO – model-based manufacturing

In a Configure To Order (CTO) business model you do not spend time for engineering anymore. All options and variants are defined and now the focus is on efficient manufacturing. The trend for CTO companies is that they have to deliver more and more variants in a faster and more demanding global market. Here the connectivity between engineering data and manufacturing data becomes one of the cornerstones of digital PLM. Digital PLM needs to make sure that all relevant data for execution (ERP and MES) is flowing through the organization without reformatting or reworking the data.

The digital thread is the dream. Industry 4.0 is focusing on this part. Also in the CTO environment it is crucial to work with a product model, so all downstream disciplines can consume the right data. Although in CTO the company´s attention might go to MES and ERP, it is crucial that the source of the product model is well specified and under control from (dgital) PLM.

Typical CTO industries are: Automotive, Consumer Goods, High-Tech, Industrial Equipment

BTO – models everywhere

flexibleIf your company has a Build To Order main delivery process, the optimum for digital PLM lies in the middle of ETO and CTO, depending on the type of products your company delivers.

In BTO there is always engineering to do. It can be customer specific engineering work (only once) or it can be changing/ adding new features to the product.

Modularity of the product portfolio might be the answer for the first option, where the second option requires strong configuration management on the engineering side, similar to the ETO model. Although the dream of many BTO companies is to change a CTO company, I strongly believe change in technology and market requirements will always be faster than product portfolio definition.

pointETO, BTO and CTO are classical linear business models. The digital enterprise is changing these models too. Customer interaction (myProduct), continuous upgrade and feedback of products (virtual twin), different business models (performance as a service) all will challenges organizations to reconsider their processes.

Digital PLM utilizing a model-based or model-driven backbone will be the (potential) future for companies as data can be flowing through the organization, not locked in documents and classical processes. In my upcoming blog post I will spend some more time on the model-based enterprise.

Conclusion:
It depends on your company´s core business process where the focus on a model-based enterprise supported by (digital) PLM benefits the most. In parallel business models are changing which means the future must be flexible.

Digital PLM should be one of your company´s main initiatives in the next 5 years if you want to stay competitive (or relevant)

 

What do you think ? Am I too optimistic or too pessimistic ?

NL-PLMAs a genuine Dutchman, I was able to spend time last month in the Netherlands, and I attended two interesting events: BIMOpen2015, where I was invited to speak about what BIM could learn from PLM (see Dutch review here) and the second event: Where engineering meets supply chain organized by two startup companies located in Yes!Delft an incubator place working close to the technical university of Delft (Dutch announcement here)

Two different worlds and I realized later, they potential have the same future. So let’s see what happened.

BIMopen 2015

bimopenBIMopen 2015 had the theme: From Design to Operations and the idea of the conference was to bring together construction companies (the builders) and the facility managers (the operators) and discuss the business value they see from BIM.

First I have to mention that BIM is a confusing TLA like PLM. So many interpretations of what BIM means. For me, when I talk about BIM I mean Building Information Management. In a narrower meaning, BIM is often considered as a Building Information Model – a model that contains all multidisciplinary information. The last definition does not deal with typical lifecycle operations, like change management, planning, and execution.

The BIMopen conference started with Ellen Joyce Dijkema from BDO consultants who addressed the cost of failure and the concepts of lean. Thinking. The high cost of failure is known and accepted in the construction industry, where at the end of the year profitability can be 1 % of turnover (with a margin of +/- 3 % – so being profitable is hard).

Lean thinking requires a cultural change, which according to Ellen Joyce is an enormous challenge, where according to a study done by Prof Dr. A. Cozijnsen there is only 19 % of chance this will be successful, compared to 40 % chance of success for new technology and 30 % of chance for new work processes.

succes

It is clear changing culture is difficult and in the construction industry it might be even harder. I had the feeling a large part of the audience did not grasp the opportunity or could find a way to apply it to their own world.

My presentation about what BIM could learn from PLM was similar. Construction companies have to spend more time on upfront thinking instead of fixing it later (costly). In addition thinking about the whole lifecycle of a construction, also in operations can bring substantial revenue for the owner or operator of a construction. Where traditional manufacturing companies take the entire lifecycle into account, this is still not understood in the construction industry.

This point was illustrated by the fact that there was only one person in the audience with the primary interest to learn what BIM could contribute to his job as facility manager and half-way the conference he still was not convinced BIM had any value for him.

PLMandBIM

A significant challenge for the construction industry is that there is no end-to-end ownership of data, therefore having a single company responsible for all the relevant and needed data does not exist. Ownership of data can result in legal responsibility at the end (if you know what to ask for) and in a risk shifting business like the construction industry companies try to avoid responsibility for anything that is not directly related to the primary activities.

Some larger companies during the conference like Ballast Nedam and HFB talked about the need to have a centralized database to collect all the data related to a construction (project). They were building these systems themselves, probably because they were not aware of PLM systems or did not see through the first complexity of a PLM system, therefore deciding a standard system will not be enough.

whyworryI believe this is short-term thinking as with a custom system you can get quick results and user acceptance (it works the way the user is asking for) however custom systems have always been a blockage for the future after 10-15 years as they are developed with a mindset from that time.

If you want to know, learn more about my thoughts have a look at 2014 the year the construction industry did not discover PLM. I will write a new post at the end of the year with some positive trends. Construction companies start to realize the benefits of a centralized data-driven environment instead of shifting documents and risks.

The cloud might be an option they are looking for. Which brings me to the second event.

Engineering meets Supply Chain

This was more an interactive workshop / conference where two startups KE-Works and TradeCloud illustrated the individual value of their solution and how it could work in an integrated way. I had been in touch with KE-Works before because they are an example of the future trend, platform-thinking. Instead of having one (or two) large enterprise system(s), the future is about connecting data-centric services, where most of them can run in the cloud for scalability and performance.

KE-Works provides a real-time workflow for engineering teams based on knowledge rules. Their solution runs in the cloud but connects to systems used by their customers. One of their clients Fokker Elmo explained how they want to speed up their delivery process by investing in a knowledge library using KE-works knowledge rules (an approach the construction industry could apply too)

image

In general if you look at what KE-works does, it is complementary to what PLM-systems or platforms do. They add the rules for the flow of data, where PLM-systems are more static and depend on predefined processes.

tradecloudTradeCloud provides a real-time platform for the supply chain connecting purchasing and vendors through a data-driven approach instead of exchanging files and emails. TradeCloud again is another example of a collection of dedicated services, targeting, in this case, the bottom of the market. TradeCloud connects to the purchaser’s ERP and can also connect to the vendor’s system through web services.

The CADAC group, a large Dutch Autodesk solution provided also showed their web-services based solution connecting Autodesk Vault with TradeCloud to make sure the right drawings are available. The name of their solution, the “Cadac Organice Vault TradeCloud Adapter” is more complicated than the solution itself.

observationWhat I saw that afternoon was three solutions providers connected using the cloud and web services to support a part of a company’s business flow. I could imagine that adding services from other companies like OnShape (CAD in the cloud), Kimonex (BOM Management for product design in the cloud) and probably 20 more candidates can already build and deliver a simplified business flow in an organization without having a single, large enterprise system in place that connects all.

The Future

InnovDilemmaI believe this is the future and potential a breakthrough for the construction industry. As the connections between the stakeholders can vary per project, having a configurable combination of business services supported by a cloud infrastructure enables an efficient flow of data.

As a PLM expert, you might think all these startups with their solutions are not good enough for the real world of PLM. And currently they are not – I agree. However disruption always comes unnoticed. I wrote about it in 2012 (The Innovators Dilemma and PLM)

Conclusion

Innovation happens when you meet people, observe and associate in areas outside your day-to-day business. For me, these two events connected some of the dots for the future. What do you think? Will a business process based on connected services become the future?

Sometimes we have to study careful to see patterns have a look here what is possible according to some scientists (click on the picture for the article)

 

image

BIM_PLMA year ago I wrote a blog post questioning if the construction industry would learn from PLM practices in relation to BIM.
In that post, I described several lessons learned from other industries. Topics like:

  • Working on a single, shared repository of on-line data (the Digital Mock Up).  Continuity of data based on a common data model – not only 3D
  • It is a mindset. People need to learn to share instead of own data
  • Early validation and verification based on a virtual model. Working in the full context
  • Planning and anticipation for service and maintenance during the design phase. Design with the whole lifecycle in mind (and being able to verify the design)

The comments to that blog post already demonstrated that the worlds of PLM and BIM are not 100 percent comparable and that there are some serious inhibitors preventing them to come closer. One year later, let´s see where we are:

BIM moving into VDC (or BLM ?)

discussThe first trend that becomes visible is that people in the construction industry start to use more and more the term Virtual Design and Construction (VDC)  instead of BIM (Building Information Model or Building Information Management?).

The good news here is that there is less ambiguity with the term VDC instead of BIM. Does this mean many BIM managers will change their job title? Probably not as most construction companies are still in the learning phase what a digital enterprise means for them.

Still Virtual Design and Construction focuses a lot on the middle part of the full lifecycle of a construction. VDC does not necessary connect the early concept phase and for sure almost neglects the operational phase. The last phase is often ignored as construction companies are not thinking (yet) about Repair & Maintenance contracts (the service economy).

And surprisingly, last week I saw a blog post from Dassault Systemes, where Dassault introduced the word BLM (Building Lifecycle Management).  Related to this blog post also some LinkedIn discussions started.  BLM, according to Dassault Systemes, is the combination of BIM and PLM – read this post here.

The challenge however for construction companies is to, what are the related data sets they require and how can you create this continuity of data. This brings us to one of the most important inhibitors.

 

Data Ownership

imageWhere in other industries a clear product data owner exists, the ownership of data in EPC (Engineering, Procurement, Construction) companies, typical for the construction industry or oil & gas industry is most of the times on purpose vague.

First of all the owner of a construction often does not know which data could be relevant to maintain. And secondly, as soon as the owner asks for more detailed information, he will have to pay for that, raising the costs, which not directly flow back to benefits, only later during the FM (Facility Management) /Operational stage.

And let´s imagine the owner could get the all the data required. Next the owner is at risk, as potentially having the information might makes you liable for mistakes and claims.

From discussion with construction owners I learned their policy is not to aim for the full dataset related to a construction. It reduces the risk to be liable. Imagine Boeing and Airbus would follow this approach. This brings us to another important inhibitor.

A risk shifting business

imageThe construction industry on its own is still a risk shifting business, where each party tries to pass the risk of cost of failure to another stakeholder in the pyramid. The most powerful owners / operators of the construction industry quickly play down the risk to their contractors and suppliers. And these companies then then distribute the risk further down to their subcontractors.

If you do not accept the risk, you are no longer in the game. This is different from other industries and I have seen this approach in a few situations.

imageFor example, I was dealing with an EPC company that wanted to implement PLM. The company expected that the PLM implementer would take a large part of the risk for the implementation. As they were always taking the risk too for their big customers when applying for a project. Here there was a clash of cultures, as PLM implementers learned that the risk of a successful PLM implementation is vague as many soft values define the success. It is not a machine or platform that has to work after some time.

imageAnother example was related to requirements management. Here the EPC company wanted to become clear and specific to their customer. However their customer reacted very strange. Instead of being happy that the EPC company invested in more upfront thinking and analysis, the customer got annoyed as they were not used to be specific so early in the process. They told the EPC company, “if you have so many questions, probably you do not understand the business”.

So everyone in the EPC business is pushed to accept a higher risk and uncertainty than other industries. However, the big reward is that you are allowed to have a cost of failure above 15 – 20 percent without feeling bad. Which this percentage you would be out of business in other industries. And this brings us to another important inhibitor.

Accepted high cost of failure

No_roiAs the industry accepts this high cost of failure, companies are not triggered to work different or to redesign their processes in order to lower the inefficiencies. The UK government mandates BIM Level 2 for their projects starting in 2016 and beyond, to reduce costs through inefficiencies.

But will the UK government invest to facilitate and aim for data ownership? Probably not, as the aim of governments is not to be extreme economical. Being not liable has a bigger value than being more efficient for governments as I learned. Being more efficient is the message to the outside world to keep the taxpayer satisfied.

It is hard to change this way of thinking. It requires a cultural change through the whole value chain. And cultural change is the “worst” thing that can happen to a company. The biggest inhibitor.

Cultural change

imageCultural change is a point that touches all industries and there is no difference between the construction industry and for example a classical discrete manufacturing company. Because of global competition and comparable products other industries have been forced already to work different, in order to survive (and are still challenged)

The cultural change lies in people. We (the older generation) are educated and brought up in classical engineering models that reflect the post second world war best practices. Being important in a process is your job justification and job guarantee.

New paradigms, based on a digital world instead of a document-shifting world, need to be defined and matured and will make many classical data processing jobs redundant. Read this interesting article from the Economist: The Onrushing Wave

This is a challenge for every company. The highest need to implement this cultural change is ironically for those countries with the highest legacy: Western Europe / the United-States.

As these countries also have the highest labor cost, the impact of, keep on doing the old stuff, will reduce their competitiveness. The impact for construction companies is less, as the construction industry is still a local business, as at the end resources will not travel the globe to execute projects.

However cheaper labor costs become more and more available in every country. If companies want to utilize them, they need to change the process. They need shift towards more thinking and knowledge in the early lifecycle to avoid the need for high qualified people to be in the field to the fix errors.

Sharing instead of owning

imageFor me the major purpose of PLM is to provide an infrastructure for people to share information in such a manner that others, not aware of the information, can still easily find and use the information in a relevant context of their activities. The value: People will decide on actual information and no longer become reactive on fixing errors due to lack of understanding the context.

The problem for the construction industry is that I have not seen any vendor focusing on sharing the big picture. Perhaps the BLM discussion will be a first step. For the major tool providers, like Autodesk and Bentley, their business focus is on the continuity of their tools, not on the continuity of data.

Last week I noticed a cloud based Issue Management solution, delivered by Kubus. Issue Management is one of the typical and easy benefits a PLM infrastructure can deliver. In particular if issues can be linked to projects, construction parts, processes, customers. If this solution becomes successful, the extension might be to add more data elements to the cloud solution. Main question will remain: Who owns the data ? Have a look:

Cloud based Issues Management

 

For continuity of data, you need standards and openness – IFC is one of the many standards needed in the full scope of collaboration. Other industries are further developed in their standards driven by end-user organizations instead of vendors. Companies should argue with their vendors that openness is a right, not a privilege.

Conclusion

A year ago, I was more optimistic about the construction industry adopting PLM practices. What I have learned this year, and based on feedback from others, were are not at the turning point yet. Change is difficult to achieve from one day to the other. Meanwhile, the whole value chain in the construction industry has different objectives. Nobody will take the risk or can afford the risk.

I remain interested to see where the construction industry is heading.

What do you think will 2015 be the year of a breakthrough?

Shaping the PLM platform of the Future

2050In this post my observations from the PDT 2014 Europe conference which was hosted in the Microsoft Conference center in Paris and organized by Eurostep and CIMdata.

It was the first time I attended this event. I was positively surprised about the audience and content. Where other PLM conferences were often more focusing on current business issues, here a smaller audience (130 persons) was looking into more details around the future of PLM. Themes like PLM platforms, the Circular Economy, Open Standards and longevity of data were presented and discussed here.

The emergence of the PLM platform

SNAGHTML149e44b9Pieter Bilello from CIMdata kicked off with his presentation: The emergence of the PLM platform. Peter explained we have to rethink our PLM strategy for two main reasons:

1.  The product lifecycle will become more and more circular due to changing business models and in parallel the different usage/availability of materials will have an impact how we design and deliver products

2.  The change towards digital platforms at the heart of our economy (The Digital Revolution as I wrote about also in previous posts) will impact organizations dramatically.

Can current processes and tools support today’s complexity. And what about tomorrow? According to a CIMdata survey there is a clear difference in profit and performance between leaders and followers, and the gap is increasing faster. “Can you afford yourself to be a follower ?” is a question companies should ask themselves.

Rethinking PLM platform does not bring the 2-3 % efficiency benefit but can bring benefits from 20 % and more.

Peter sees a federated platform as a must for companies to survive. I in particular likes his statement:

The new business platform paradigm is one in which solutions from multiple providers must be seamlessly deployed using a resilient architecture that can withstand rapid changes in business functions and delivery modalities

Industry voices on the Future PLM platform

Auto

SNAGHTML14a2180eSteven Vetterman from ProSTEP talked about PLM in the automotive industry. Steven started describing the change in the automotive industry, by quoting Heraclitus Τα πάντα ρεί – the only constant is change. Steven described two major changes in the automotive industry:

1.  The effect of globalization, technology and laws & ecology

2.  The change of the role of IT and the impact of culture & collaboration

Interesting observation is that the preferred automotive market will shift to the BRIC countries. In 2050 more than 50 % of the world population (estimate almost 10 billion people at that time) will be living in Asia, 25 percent in Africa. Europe and Japan are aging. They will not invest in new cars.

For Steven, it was clear that current automotive companies are not yet organized to support and integrate modern technologies (systems engineering / electrical / software) beyond mechanical designs. Neither are they open for a true global collaboration between all players in the industry. Some of the big automotive companies are still struggling with their rigid PLM implementation. There is a need for open PLM, not driven from a single PLM system, but based on a federated environment of information.

Aero

Yves Baudier spoke on behalf of the aerospace industry about the standardization effort at their Strategic Standardization Group around Airbus and some of its strategic suppliers, like Thales, Safran, BAE systems and more. If you look at the ASD Radar, you might get a feeling for the complexity of standards that exist and are relevant for the Airbus group.

standards at airbus

It is a complex network of evolving standard all providing (future) benefits in some domains. Yves was talking about the through Lifecycle support which is striving for data creation once and reuse many times during the lifecycle. The conclusion from Yves, like all the previous speakers is that: The PLM Platform of the Future will be federative, and standards will enable PLM Interoperability

Energy and Marine

SNAGHTML14a7edf3Shefali Arora from Wärtsilä spoke on behalf of the energy and marine sector and gave an overview of the current trends in their business and the role of PLM in Wärtsilä. With PLM, Wärtsilä wants to capitalize on its knowledge, drive costs down and above all improve business agility. As the future is in flexibility. Shefali gave an overview of their PLM roadmap covering the aspects of PDM (with Teamcenter), ERP (SAP) and a PLM backbone (Share-A-space). The PLM backbone providing connectivity of data between all lifecycle stages and external partners (customer / suppliers) based on the PLCS standard. Again another session demonstrating the future of PLM is in an open and federated environment

Intermediate conclusion:
The future PLM platform is a federated platform which adheres to standards provides openness of interfaces that permit the platform to be reliable over multiple upgrade cycles and being able to integrate third-parties (Peter Bilello)

Systems Engineering

imageThe afternoon session I followed the Systems Engineering track. Peter Bilello gave an overview of Model-Based Systems engineering and illustrated based on a CIMdata survey that even though many companies have a systems engineering strategy in place it is not applied consistently. And indeed several companies I have been dealing with recently expressed their desire to integrate systems engineering into their overall product development strategy. Often this approach is confused by believing requirements management and product development equal systems engineering. Still a way to go.

Dieter Scheithauer presented his vision that Systems Engineering should be a part of PLM, and he gave a very decent, academic overview how all is related. Important for companies that want to go into that direction, you need to understand where you aiming at. I liked his comparison of a system product structure and a physical product structure, helping companies to grab the difference between a virtual, system view and a physical product view:

system and product

More Industry voices

Construction industry

imageThe afternoon session started with Christophe Castaing, explaining BIM (Building Information Modeling) and the typical characteristics of the construction industry. Although many construction companies focus on the construction phase, for 100 pieces of information/exchange to be managed during the full life cycle only 5 will be managed during the initial design phase (BIM), 20 will be managed during the construction phase (BAM) and finally 75 will be managed during the operation phase (BOOM). I wrote about PLM and BIM last year: Will 2014 become the year the construction industry will discover PLM?

Christophe presented the themes from the French MINnD project, where the aim is starting from an Information Model to come to a platform, supporting and integrated with the particular civil and construction standards, like IFC. CityGml but also PLCS standard (isostep ISO 10303-239

Consumer Products

Amir Rashid described the need for PLM in the consumer product markets stating the circular economy as one of the main drivers. Especially in consumer markets, product waste can be extremely high due to the short lifetime of the product and everything is scrapped to land waste afterward. Interesting quote from Amir: Sustainability’s goal is to create possibilities not to limit options. He illustrated how Xerox already has sustainability as part of their product development since 1984. The diagram below demonstrates how the circular economy can impact all business today when well-orchestrated.

circular economy

SNAGHTML14b000f6Marc Halpern closed the tracks with his presentation around Product Innovation Platforms, describing how Product Design and PLM might evolve in the upcoming digital era. Gartner believes that future PLM platforms will provide insight (understand and analyze Big Data), Adaptability (flexible to integrate and maintain through an open service oriented architecture), promoting reuse (identifying similarity based on metadata and geometry), discovery (the integration of search analysis and simulation) and finally community (using the social paradigm).

If you look to current PLM systems, most of them are far from this definition, and if you support Gartner’s vision, there is still a lot of work for PLM vendor to do.

Interesting Marc also identified five significant risks that could delay or prevent from implementing this vision:

  • inadequate openness (pushing back open collaboration)
  • incomplete standards (blocking implementation of openness)
  • uncertain cloud performance (the future is in cloud services)
  • the steep learning curve (it is a big mind shift for companies)
  • Cyber-terrorism (where is your data safe?)

After Marc´s session there was an interesting panel discussion with some the speakers from that day, briefly answering discussing questions from the audience. As the presentations have been fairly technical, it was logical that the first question that came up was: What about change management?

A topic that could fill the rest of the week but the PDT dinner was waiting – a good place to network and digest the day.

DAY 2

imageDay 2 started with two interesting topics. The first presentation was a joined presentation from Max Fouache (IBM) and Jean-Bernard Hentz (Airbus – CAD/CAM/PDM R&T and IT Backbones). The topic was about the obsolescence of information systems: Hardware and PLM applications. As in the aerospace industry some data needs to be available for 75 years. You can imagine that during 75 years a lot can change to hardware and software systems. At Airbus, there are currently 2500 applications, provided by approximate 600 suppliers that need to be maintained. IBM and Airbus presented a Proof of Concept done with virtualization of different platforms supporting CATIA V4/V5 using Linux, Windows XP, W7, W8 which is just a small part of all the data.

The conclusion from this session was:

To benefit from PLM of the future, the PLM of the past has to be managed. Migration is not the only answer. Look for solutions that exist to mitigate risks and reduce costs of PLM Obsolescence. Usage and compliance to Standards is crucial.

Standards

Next Howard Mason, Corporate Information Standards Manager took us on a nice journey through the history of standards developed in his business. I loved his statement: Interoperability is a right, not a privilege

imageIn the systems engineering track Kent Freeland talked about Nuclear Knowledge Management and CM in Systems Engineering. As this is one of my favorite domains, we had a good discussion on the need for pro-active Knowledge Management, which somehow implies a CM approach through the whole lifecycle of a plant. Knowledge management is not equal to store information in a central place. It is about building and providing data in context that it can be used.

Ontology for systems engineering

Leo van Ruijven provided a session for insiders: An ontology for Systems Engineering based on ISO 15926-11. His simplified approach compared to the ISO 15288 lead to several discussion between supporters and opponents during lunch time.

Master Data Management

imageAfter lunch time Marc Halpern gave his perspective on Master Data Management, a new buzz-word or discipline need to orchestrate enterprise collaboration.

Based on the type of information companies want to manage in relation to each other supported by various applications (PLM, ERP, MES, MRO, …) this can be a complex exercise and Marc ended with recommendations and an action plan for the MDM lead. In my customer engagements I also see more and more the digital transformation leads to MDM questions. Can we replace Excel files by mastered data in a database?

SNAGHTML14c68ed3

Almost at the end of the day I was speaking about the PDM platform of the people targeted for the people from the future. Here I highlighted the fundamental change in skills that’s upcoming. Where my generation was trained to own and capture information as much as possible information in your brain (or cabinet), future generations are trained and skilled in finding data and building information out of it. Owning (information) is not crucial for them. Perhaps as the world is moving fast. See this nice YouTube movie at the end.

image

Ella Jamsin ended the conference on behalf of the Ellen MacArthur Foundation explaining the need to move to a circular economy and the PLM should play a role in that. No longer is PLM from cradle-to-grave but PLM should support the lifecycle from cradle-to-cradle.

Unfortunate I could not attend all sessions as there were several parallel sessions. Neither have I written about all sessions I attended. The PDT Europe conference, a conference for people who mind about the details around the PLM future concepts and the usage of standards, is a must for future strategists.

2050This is for the moment the last post about the difference between files and a data-oriented approach. This time I will focus on the need for open exchange standards and the relation to proprietary systems. In my first post, I explained that a data-centric approach can bring many business benefits and is pointing to background information for those who want to learn more in detail. In my second post, I gave the example of dealing with specifications.

It demonstrated that the real value for a data-centric approach comes at the moment there are changes of the information over time. For a specification that is right the first time and never changes there is less value to win with a data-centric approach. Moreover, aren’t we still dreaming that we do everything right the first time.

The specification example was based on dealing with text documents (sometimes called 1D information). The same benefits are valid for diagrams, schematics (2D information) and CAD models (3D information)

1D,2D,3D …..

1DThe challenge for a data-oriented approach is that information needs to be stored in data elements in a database, independent of an individual file format. For text, this might be easy to comprehend. Text elements are relative simple to understand. Still the OpenDocument standard for Office documents is in the background based on a lot of technical know-how and experience to make it widely acceptable. For 2D and 3D information this is less obvious as this is for the domain of the CAD vendors.

CAD vendors have various reasons not to store their information in a neutral format.

  • First of all, and most important for their business, a neutral format would reduce the dependency on their products. Other vendors could work with these formats too, therefore reducing the potential market capture. You could say that in a certain manner the Autodesk 2D format for DXF (and even DWG) have become a neutral format for 2D data as many other vendors have applications that read and write back information in the DXF-data format. So far DXF is stored in a file but you could store DXF data also inside a database and make it available as elements.
  • This brings us to the second reason why using neutral data formats are not that evident for CAD vendors. It reduces their flexibility to change the format and optimize it for maximal performance. Commercially the significant, immediate disadvantage of working in neutral formats is that it has not been designed for particular needs in an individual application and therefore any “intelligent” manipulations on the data are hard to achieve..

3dThe same reasoning can be applied to 3D data, where different neutral formats exist (IGES, STEP, …. ). It is very difficult to identify a common 3D standard without losing many benefits that an individual 3D CAD format brings currently. For example, CATIA is handling 3D CAD data in a complete different way as Creo does, and again handled different compared to NX, SolidWorks, Solid Edge and Inventor. Even some of them might use the same CAD kernel.

However, it is not only about the geometry anymore; the shapes represent virtual objects that have metadata describing the objects. In addition other related information exists, not necessarily coming from the design world, like tasks (planning), parts (physical), suppliers, resources and more

PLM, ERP, systems and single source of truth

This brings us in the world of data management, in my world mainly PLM systems and ERP systems. An ERP system is already a data-centric application, the BOM is already available as metadata as well as all the scheduling and interaction with resources, suppliers and financial transactions. Still ERP systems store a lot of related documents and drawings, containing content that does not match their data model.

PLM systems have gradually becoming more and more data centric as the origin was around engineering data, mostly stored in files. In a data-centric approach, there is the challenge to exchange data between a PLM system and an ERP system. Usually there is a need to share information between two systems, mainly the items. Different definitions of an item on the PLM and ERP side make it hard to exchange information from one system to the other. It is for that reason why there are many discussions around PLM and ERP integration and the BOM.

ebom_mbom_problem

In the modern data-centric approach however we should think less and less in systems and more and more in business processes performed on actual data elements. This requires a company-wide, actually an enterprise-wide or industry-wide data definition of all information that is relevant for the business processes. This leads into Master Data Management, the new required skill for enterprise solution architects

black holeThe data-centric approach creates the impression that you can achieve a single source of the truth as all objects are stored uniquely in a database. SAP solves the problem by stating everything fits in their single database. To my opinion this is more a black hole approach: Everything gets inside, but even light cannot escape. Usability and reuse of information that was stored with the intention not to be found is the big challenge here.

Other PLM and ERP vendors have different approaches. Either they choose for a service bus architecture where applications in the background link and synchronize common data elements from each application. Therefore, there is some redundancy, however everything is connected. More and more PLM vendors focus on building a platform of connected data elements, where on top applications will run, like the 3DExperience platform from Dassault Systèmes.

androidAs users we are more and more used to platforms as Google, Apple provide these platforms already in the cloud for common use on our smartphones. The large amount of apps run on shared data elements (contacts, locations …) and store additional proprietary data.

Platforms, Networks and standards

And here we enter an interesting area of discussion. I think it is a given that a single database concept is a utopia. Therefore, it will be all about how systems and platforms communicate with each other to provide in the end the right information to the user. The systems and platforms need to be data-centric as we learned from the discussion around the document (file centric) or data-centric approach.

In this domain, there are several companies already active for years. Datamation from Dr. Kais Al-Timimi in the UK is such a company. Kais is a veteran in the PLM and data modeling industry, and they provide a platform for data-centric collaboration. This quote from one of his presentations, illustrates we share the same vision:

“……. the root cause of all interoperability and data challenges is the need to transform data between systems using different, and often incompatible, data models.

It is fundamentally different from the current Application Centric Approach, in that data is SHARED, and therefore, ‘NOT OWNED’ by the applications that create it.

This means in a Data Centric Approach data can deliver MORE VALUE, as it is readily sharable and reusable by multiple applications. In addition, it removes the overhead of having to build and maintain non-value-added processes, e.g. to move data between applications.”

Another company in the same domain is Eurostep, who are also focusing on business collaboration between in various industries. Eurostep has been working with various industry standards, like AP203/214, PLCS and AP233. Eurostep has developed their Share-A-space platform to enable a data-centric collaboration.

ISO-BIMThis type of data collaboration is crucial for all industries. Where the aerospace and automotive industry are probably the most mature on this topic, the process industry and construction industry are currently also focusing on discovering data standards and collaboration models (ISO 15926 / BIM). It will be probably the innovators in these industries that clear the path for others. For sure it will not come from the software vendors as I discussed before.

Conclusion

If you reach this line, it means the topic has been interesting in depth for you. In the past three post starting from the future trend, an example and the data modeling background, I have tried to describe what is happening in a simplified manner.

If you really want to dive into the PLM for the future, I recommend you visit the upcoming PDT 2014 conference in Paris on October 14 and 15. Here experts from different industries will present and discuss the future PLM platform and its benefits. I hope to meet you there.

pdteurope

 

Some more to read:

https://us.sogeti.com/wp-content/uploads/2014/04/PLM-Systems-White-Paper.pdf

imageThis year I had several discussions with persons working for construction companies. They shared their BIM dreams and tried to explain them the PLM benefits and basics as they are much alike. The challenge in these discussions was that each of us comes from a complete different background. The word PLM does not resonate well outside product-centric companies. In project-centric companies, people tend to focus more on the tools they are using, instead of the overall business process. Construction companies and EPC companies in Oil & Gas always had a project-centric approach, and for them every project is unique.

Ten years ago

AECbytes.com published in 2004 the chart below, demonstrating the construction industry is lagging behind in productivity compared to other industries.

image

You find a link to the full article here.

Now it is BIM

It is an old graph, and I haven’t seen a more recent one. However, I guess the trend has not changed significantly. What has changed is that construction companies are now talking about BIM. BIM meaning Building Information Model, a term which has a history with Autodesk. Read the wiki news about BIM. There are many interpretations of BIM. One of the formal definitions is:

Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition.

This is a high-level definition, and BIM is characterized as a shared knowledge resource. Is it a 3D Digital model ? Is it a kind of DMU (Digital Mock-Up) ? Is it a Building Lifecycle environment ? There is the word “life-cycle” in the definition.

Why BIM?

I noticed many vendors and consultants in this industry talk about what is BIM. It is rare to find quantified values for implementing BIM. You find exactly the same values as PLM brings to manufacturing companies. Better decisions, managing complex constructions and projects, early decisions that save costs later, etc.

Governments have been pushing BIM to the construction industry (both for the civil and building industry) as they believe this is a way to improve quality and better manage time and costs. And as they are usually the big spenders, the leading construction firms have to adapt to these standards to get these contracts.

Would any construction company begin with BIM without being pushed?

In product-centric companies, the global competition and the consumer are driving the need for PLM. Margins are under pressure, and they need to be competitive to stay in business. The construction industry is not (yet) that much driven by global influence and the choice of consumers.

The chart below illustrates the BIM ambition in the UK. At this time, companies are entering level 2, and they struggle to understand what is the impact for them to be at BIM Level 2. I am sure other countries have their own and similar roadmap.

image

The diagram illustrates the same path which other industries have been going through in the past twenty years.

BIM Levels and PDM / PLM

BIM level 0 is focused on managing CAD, in the other industries this was the time that single disciplines managed their own CAD data. There was no sharing at that time.

Level 1 is focusing on managing 2D and 3D CAD together much similar to what in other industries is done with a PDM system. The PDM system manages in one environment the 2D and 3D data. This is still as a departmental solution but could provide in one environment information from different disciplines. Here, you find all suppliers from 3D CAD systems having their PDM solution, not focusing on a core 3D Model

Level 2 is about sharing 3D BIM models for different disciplines to support 4D (construction planning based on 3D) and 5D (construction planning based on 3D planning and costing integrated). This is what in other industries, primarily automotive and aerospace, was considered as the early days of DMU (Digital Mock Up) and PLM. Dassault Systemes and Siemens are leading here and historically CATIA has been the base for the 3D Model.

alm_1BIM Level 3 is what can be found currently in the asset centric industries (Energy, Nuclear, Oil & Gas) where working from a virtual plant model all disciplines are connected through the whole lifecycle. This is the domain that I have been advocating in previous posts, promoting PLM concepts and capabilities.
For example read: PLM for Asset Lifecycle Management.

Apparently the construction industry is still in the early phases of BIM Level 3. I would compare it to teenage sex; they all talk about it, but nobody does it. Or Hollywood BIM as Antonio Ruivo Meireles calls it in his AECbytes article: “Say “NO!” to Hollywood BIM”.

Antonio talks about the BIM implementation at Mota-Engill. Briefly touching a common topic for PLM implementations: “People and Cultural Change”. However, most of the implementation report was focused on tools, where even Excel and Visual Basic play a role.

Tools or Platform ?

And this is the point where construction companies could learn from other industries. They have discovered (or are still discovering) that Excel and Visual Basic are like soft drugs. They take away the pain, but they do not provide the solution in the long term. Instead of that, legacy Excels start piling up in directories, and the Visual Basic code becomes the domain of an enthusiastic expert (till this expert moves to another company or retires). The risk is ending up with a legacy environment so hard to change that a costly revolution is needed at a certain moment.

imageConstruction companies are still investing in selecting a set of tools/applications, each with their own proprietary data and format. And they use customizations or standardized information carriers, like the COBie spreadsheets, to exchange information between partners and disciplines. This is already a giant step forward, as COBie forces companies to focus on mandatory and standard content, required at specific stages of the lifecycle instead of searching for it when it is actually needed.

Somehow the COBie approach is similar to the early days of PLM, where companies forced their disciplines to save information in the PLM system (as it became imperative). In these departments and disciplines the work and interaction did not change so much as before they had the PLM system. The cultural change here was that designers and engineers had to enter more data upfront for higher quality downstream.

An intermediate conclusion might be that construction companies follow the same direction as early PLM. Standardizing the data (model) to have a common understanding between stakeholders. Construction companies might not want to implement a PLM system as ownership of data is unclear as compared to manufacturing companies every discipline or department in PLM might be another company in the construction industry.

Now let’s look into the future

The movie below from Airbus describes the current way of working in a multidisciplinary, multi-partner, multi-location online system. Airbus calls it their DMU. Please before continuing reading look at this movie as the concept is crucial

Airbus DMU – Digital Mock Up

I want to highlight two statements in this movie.

Russ Brigham @ 5:39 talking about suppliers not participating to the DMU:

“They will be making decisions on out of date data or even incorrect data”

And @ 7:11

“DMU is a mind-set …….”

I am aware that the aerospace industry is not directly comparable to the construction industry, there are commonalities from which the construction industry can learn:

  • Working on a single, shared repository of on-line data (the DMU)
    A common data model – not only 3D
  • It is a mind-set.
    People need to share instead of own data
  • Early validation and verification based on a virtual model
    Working in the full context
  • Planning and anticipation for service and maintenance during the design phase
    Design with the whole lifecycle in mind (and being able to verify the design)

Data ownership ?

For the construction industry, the current difficulty might be that none of the parties involved wants to invest in owning the data. For Airbus, it is clear. As the manufacturer of the airplane, they remain responsible for the information throughout the whole lifecycle.

For a construction, this might be different. The owner might be totally disconnected from the construction and the operations, therefore, not willing to promote or invest in the DMU approach.

imageHowever, the owner should realize that it is not about ownership but about facilitating on-line collaboration around a construction from the initial concept phase till maintenance and even decommissioning, connecting all the stakeholders. The benefits better decisions at each stage of the lifecycle leading to lower failure costs and waste in materials, resources and time. The construction industry still accepts too high failure rates compared to the manufacturing industry. And as at the end the owner/operator spends most of these costs, they should be interested in this approach.

Major construction companies responsible for the project execution and control might want to invest in a PLM platform, allowing them to execute projects better, learn from other connected projects and create a solid base for maintenance contracts

My dream and wish for 2014 for the construction industry: Focus on the next step of integrating data on a PLM backbone instead of standardizing interfaces between applications. It is the future mind-set proven in other industries.

I wish you all a happy, healthy and successful 2014 full of change for the best
May BIM, BAM, BOOM become true
The Future of the Building Industry (5/5): BIM, BAM, BOOM!