You are currently browsing the category archive for the ‘Green Development’ category.

We are happy to close the year with the first round of the PLM Global Green Alliances (PGGA) series: PLM and Sustainability.

We interviewed PLM-related software vendors in this series, discussing their sustainability mission and offering.

We talked with SAP, Autodesk, Dassault Systèmes, Sustaira and Aras and now with PTC. It was an exciting discussion, looking back at their Lifecycle Analysis (LCA) history and ending with a cliffhanger about what’s coming next year.

PTC

The discussion was with Dave Duncan,  VP Sustainability at PTC, focusing on industrial Sustainability as well as PTC’s internal footprint reduction programs, joined by James Norman, who globally leads PTC’s Community of Practice for PLM and Design-for-Sustainability.

Interesting to notice from this discussion, listen to the introduction of Dave and James and their history with Sustainability long before it became a buzzword and then notice how long it takes till digital thread and digital twin are mentioned – enjoy the 38 minutes of interaction below


Slides shown during the interview combined with additional company information can be found HERE.

 

What we have learned

  • It was interesting to learn that just before the financial crisis in 2008, PTC invested (together with James Norman) in lifecycle analysis. But, unfortunately, a focus on restoring the economy silenced this activity until (as Dave Duncan says) a little more than six months ago, when Sustainability is almost in the top 3 of every company’s agenda.
  • Regulation and financial reporting are the current drivers for companies to act related to Sustainability.
  • The digital thread combined with the notion of relying on data quality are transformational aspects.
  • Another transformational aspect is connecting sustainability as an integrated part of product development instead of a separate marketing discipline.
  • Early next year, we will learn more about the realization of the PTC Digital Twin.

Want to learn more

Here are some links to the topics discussed in our meeting:

 

Conclusions

It was great to conclude with PTC this year. I hope readers following this series:  “The PLM Global Green Alliance meets  …” has given a good first impression of where PLM-related vendors are heading regarding their support for a sustainable future.

We touched base with them, the leaders, and the experts in their organizations. We discussed the need for data-driven infrastructures, the relation with the circular economy and compliance.

Next year we plan to follow up with them, now looking more into the customer experiences, tools, and methodology used.

 

 

 

 

I hope you all remained curious after last week’s report from day 1 of the PLM Roadmap / PDT Europe 2022 conference in Gothenburg. The networking dinner after day 1 and the Share PLM after-party allowed us to discuss and compare our businesses. Now the highlights of day 2

 

The Power of Curiosity

We started with a keynote speech from Stefaan van Hooydonk, Founder of the Global Curiosity Institute. It was a well-received opener of the day and an interesting theme concerning PLM.

According to Stefaan, in the previous century, curiosity had a negative connotation. Curiosity killing the cat is one of these expressions confirming the mindset. It was all about conformity to the majority, the company, and curiosity was non-conformant.

The same mindset I would say we have with traditional PLM; we all have to work the same way with the same processes.

In the 21st century, modern enterprises stimulate curiosity as we understand that throughout history, curiosity has been the engine of individual, organizational, and societal progress. And in particular, in modern, unpredictable times, curiosity becomes important, for the world, the others around us and ourselves.

As Stefaan describes in his book, the Curiosity Manifesto, organizations and individuals can develop curiosity. Stefaan pushed us to reflect on our personal curiosity behavior.

  • Are we really interested in the person, the topic I do not know or do not like?
  • Are we avoiding curious steps out of fear? Fear for failing, judgment?

After Stefaan’s curiosity storm, you could see that the audience was inspired to apply it to themselves and their PLM mission(s).

I hope the latter – as here there is a lot to discover.


 

Digital Transformation – Time to roll up your sleeves

In his presentation, Torbjörn Holm, co-founder of Eurostep, addressed one of the bigger elephants in the modern enterprise: how to deal with data?

Thanks to digitization, companies are gathering ad storing data, and there seem to be no limits. However, data centers compete for electricity from the grid with civilians.

Torbjörn also introduced the term “Dark data – the dirty secret of the ICT sector. We store too much data; some research mentions that only 12 % of the data stored is critical, and the rest clogs up on some file servers. Storing unstructured and unused data generates millions of greenhouse gasses yearly.

It is time for a data cleanup day, and inspired by Torbjörn’s story, I have already started to clean up my cloud storage. However, I did not touch my backup hard disks as they do not use energy when switched off.

Further, Torbjörn elaborated that companies need to have end-to-end data policies. Which data is required? And in the case of contracted work or suppliers, data is crucial.

Ultimately companies that want to benefit from a virtual twin of their asset in operation need to have processes in place to acquire the correct data and maintain the valid data. Digital twins do not run on documents; as mentioned in some of my blog posts, they need accurate data.

Torbjörn once more reminded us that the PLCS objective is designed for that.


 

Heterogeneous and federated PLM – is it feasible?

One of the sessions that upfront had most of my attention was the presentation from Erik Herzog, Technical Fellow at Saab Aeronautics and Jad El-Khoury, Researcher at the KTH/Royal Institute of Technology.

Their presentation was closely related to the pre-conference workshop we had organized by Erik and Eurostep. More about this topic in the future.

Saab, Eurostep and KTH conducted a research project named Helipe to analyze and test a federated PLM architecture. The concept was strongly driven by engineering. The idea is shown in the images below.

First are the four main modular engineering environments; in the image, we see mechanical, electrical, software and engineering environments. The target is to keep these environments as standard as possible towards the outside world so that later, an environment could be swapped for a better environment. Inside an environment, automation should provide optimal performance for the users.

In my terminology, these environments serve as systems of engagement.

The second dimension of this architecture is the traceability layer(s) – the requirements management layer, the configuration item structures, change control and realization structures.

These traceability structures look much like what we have been doing with traditional PLM, CM and ERP systems. In my terminology, they are the systems or record, not mentioned to directly serve end-users but to provide traceability, baselines for configuration, compliance and more.

The team chose the OSLC standard to realize these capabilities. One of the main reasons because OSLC is an existing open standard based on linked data, not replicating data. In this way, a federated environment would be created with designated connections between datasets.

Jad El-Koury demonstrated how to link an existing requirement in Siemens Polarion to a Defect in IBM ELM and then create a new requirement in Polarion and link this requirement to the same defect. I never get excited from technical demos; more important to learn is the effort to build such integration and its stability over time. Click on the image for the details

The conclusions from the team below give the right indicators where the last two points seem feasible.

Still, we need more benchmarking in other environments to learn.

I remain curious about this approach as I believe it is heading toward what is necessary for the future, the mix of systems of record and systems of engagement connected through a digital web.

The bold part of the last sentence may be used by marketers.


 

Sustainability and Data-driven PLM – the perfect storm 

For those familiar with my blog (virtualdutchman.com) and my contribution to the PLM Global Green Alliance, it will be no surprise that I am currently combining new ways of working for the PLM domain (digitization) with an even more hot topic, sustainability.

More hot is perhaps a cynical remark.

In my presentation, I explained that a model-based, data-driven enterprise will be able to use digital twins during the design phase, the manufacturing process planning and twins of products in operation. Each twin has a different purpose.

The virtual product during the design phase does not have a real physical twin yet, so some might say it is not a twin at this stage. The virtual product/twin allows companies to perform trade-offs, verification and validation relatively fast and inexpensively. The power of analyzing this virtual twin will enable companies to design products not only at the best price/performance range but even as important, with the lowest environmental impact during manufacturing and usage in the field.

The virtual world of digital twins – (c) 2018 Boeing – diamond

As the Boeing diamond nicely shows, there is a whole virtual world for digital twins. The manufacturing digital twin allows companies to analyze their manufacturing process and virtually analyze the most effective manufacturing process, preferably with the lowest environmental impact.

For digital twins from a product in the field, we can analyze its behavior and optimize performance, hopefully with environmental performance indicators in mind.

For a sustainable future, it is clear that we need to implement concepts of the circular economy as the earth does not have enough resources and renewables to support our current consumption behavior and ways of living.

Note: not for everybody on the globe,  a quote from the European Environment Agency below:

Europe consumes more resources than most other regions. An average European citizen uses approximately four times more resources than one in Africa and three times more than one in Asia, but half of that of a citizen of the USA, Canada, or Australia

To reduce consumption, one of the recommendations is to switch the business model from owning products to products as a service. In the case of products as a service, the manufacturer becomes the owner of the full product lifecycle. Therefore, the manufacturer will have business reasons to make the products repairable, upgradeable, recyclable and using energy efficiently, preferably with renewables. If not, the product might become too expensive; fossil energy will be too expensive as carbon taxes will increase, and virgin materials might become too expensive.

It is a business change; however, sustainability will push organizations to change faster than we are used to. For example, we learned this week that the peeking energy prices and Russia’s current war in Ukraine have led to strong investments in renewables.

As a result, many countries no longer want to depend on Russian energy. The peak of carbon emissions for the world is now expected in 2025.
(Although we had a very bad year so far)

Therefore, my presentation concluded that we should use sustainability as an additional driver for our digital transformation in the PLM domain. The planet cannot wait until we slowly change our traditional working methods.

Therefore, the need for digital twins to support sustainability and systems thinking are the perfect storm to speed up our digitization projects.

You can find my presentation as usual, here on SlideShare and a “spoken” version on our PGGA YouTube channel here


 

Digitalization for the Development and Industrialization of Innovative and Sustainable Solutions

This session, given by  Ola Isaksson, Professor, Product Development & Systems Engineering Design Research Group Leader at Chalmers University, was a great continuation on my part of sustainability. Ola went deeper into the aspects of sustainable products and sustainable business models.

The DSIP project (Digital Sustainability Implementation Package – image above) aims to help companies understand all aspects of sustainable development. Ola mentioned that today’s products’ evolution is insufficient to ensure a sustainable outcome. Currently, not products nor product development practices are adequate enough as we do not understand all the aspects.

For example, Ola used the electrification process, taking the Lithium raw material needed for the batteries. If we take the Nissan Leaf car as the point of measure, we would have used all Lithium resources within 50 years.

Therefore, other business models are also required, where the product ownership is transferred to the manufacturer. This is one of the 9Rs (or 10), as the image shows moving from a linear economy towards a circular economy.

Also, as I mentioned in my session,  Ola referred to the upcoming regulations forcing manufacturers to change their business model or product design.  All these aspects are discussed in the DSIP project, and I look forward to learning the impact this project had on educating and supporting companies in their sustainability journey.

Click on the image to discover the scope


 

A day 2 summary

We had Bernd Feldvoss, Value Stream Leader PLM Interoperability Standards at Airbus, reporting on the progress of the A&D action group focusing on Collaboration. At this stage, the project team has developed an open-service Collaboration Management System (CMS) web application, providing navigation through the eight-step guidelines and offering the potential to improve OEM-supplier collaboration consistency and efficiency within the A&D community.

We had Henrik Lindblad, Group Leader PLM & Process Support at the European Spallation Source, building and soon operating the world’s most powerful neutron source, enabling scientific breakthroughs in research related to materials, energy, health and the environment. Besides a scientific breakthrough, this project is also an example of starting with building a virtual twin of the facility from the start providing a multidisciplinary collaboration space.


 

Conclusion

I left the conference with a lot of positive energy. The Curiosity session from Stefaan van Hooydonk energized us all, but as important for our PLM domain, I saw the trend towards more federated PLM environments, more discussions related to sustainability, and people in 3D again. So far, my takeaways this time.  Enough to explore till the next event.

The summer holidays are over, and with the PLM Global Green Alliance, we are glad to continue with our series: PLM and Sustainability, where we interview PLM-related software vendors, talking about their sustainability mission and offering.

We talked with SAP, Autodesk, and Dassault Systèmes. This week we spoke with Sustaira, and soon we will talk with Aras.  Sustaira, an independent Siemens partner, is the provider of a sustainability platform based on Mendix.

SUSTAIRA

The interview with Vincent de la Mar, founder and CEO of Sustaira, was quite different from the previous interviews. In the earlier interviews, we talked with people driving sustainability in their company and software portfolio. Now with Sustaira, we were talking with a relatively new company with a single focus on sustainability.

Sustaira provides an open platform targeting purely sustainability by offering relevant apps and infrastructure based on Mendix.

Listen to the interview and discover the differences and the potential for you.

Slides shown during the interview and additional company information: Sustaira Overview 2022.

What we have learned

Using the proven technology of the Mendix platform allows you to build a data-driven platform focused on sustainability for your company.

As I wrote in my post: PLM and Sustainability, there is the need to be data-driven and connected with federated data sources for accurate data.

This is a technology challenge. Sustaira, as a young company, has taken up this challenge and provides various apps related to sustainability topics on its platform. Still, they remain adaptable to your organization.

Secondly, I like the concept that although Mendix is part of the Siemens portfolio, you do not need to have Siemens PLM installed. The openness of the Sustaira platform allows you to implement it in your organization independent of your PLM infrastructure.

The final observation – the rule of people, process, and technology – is still valid. To implement Sustaira in an efficient and valuable manner, you need to be clear in your objectives and sustainability targets within the organization. And these targets should be more detailed than the corporate statement in the annual report.

 

Want to Learn more

To learn more about Sustaira and the wide variety of offerings, you can explore any of these helpful links:

 

Conclusion

It was interesting to learn about Sustaira and how they started with a proven technology platform (Mendix) to build their sustainability platform. Being sustainable involves using trusted data and calculations to understand the environmental impact at every lifecycle stage.

Again we can state that the technology is there. Now it is up to companies to act and connect the relevant data sources to underpin and improve their sustainability efforts.

 

As I promised I would be enjoying my holidays in the upcoming month there as still a few points I want to share with you.

Not a real blog post, more an agenda and a set of questions for potential follow-up.

Here are five topics for the upcoming months, potentially also relevant and interesting for you. Have a look.

 

Peer Check

This week the discussion I had with Adam Keating, Colab’s CEO and founder, was published on their podcast channel, Peer Check. As I slowly discovered the content, I mentioned their podcast in my last blog post.  I was impressed by the first episodes I could listen to and listened to all of them last week.

Digesting the content from these episodes, I have the impression that we are following Adam’s or Collab’s lifecycle. From understanding the market, the people, and the industry towards the real collaboration topics, like MBD, their product offering and ultimately the connection with PLM. I am curious about what is next.

For me discovering their podcast and being able to participate was an exciting and learning moment. I am still waiting for the readers of this blog to mention their favorite podcasts.

Let us know in the comments.

PLM Global Green Alliance

With the PLM Global Green Alliance (PGGA), we plan to have monthly ZOOM discussions with our LinkedIn members, moderated by one of the PGGA core team members.

The idea of these sessions is that we pick a topic, the moderator sets the scene and then it is up to the members to discuss.

Participants can ask questions and bring in their points. In our understanding, many companies believe they have to do something about sustainability beyond writing it in their mission, but where and how to start?

So the PGGA discussion will be a place to get inspired and act.

Potential topics for the discussion are: What technologies must I master to become more sustainable? How can I motivate my company to become real sustainable? What is a lifecycle assessment (LCA), and how to introduce it in my company? What is the circular economy, and what is needed to become more circular in the context of PLM?

If you like one of the topics, let us know in the comments or add your favorite discussion topic. More on the agenda in early September

 

PGGA meets ….

In this series with PLM vendors and solution providers, we try to understand their sustainability drivers, their solutions, their roadmap and their perception of what is happening in the field. So far, SAP, Autodesk and Dassault Systèmes have contributed to these series. After the summer, we continue with two interviews:

Early in September, the PGGA will discuss sustainability with Sustaira. Sustaira is a Siemens partner, and they offer an all-in-one Sustainability platform, domain-specific Sustainability app templates, and custom Sustainability web and mobile initiatives. Expect the interview to be published early in September.

In the last week of September, the PGGA will have a meeting with Aras in our series related to sustainability. Aras is one of the main PLM providers and we will discuss sustainability even more with them as you can read further on in this agenda. Expect the interview to be released by the end of September.

No actions here for you, just stay tuned in September with the PGGA.

 

CIMdata PLM Roadmap and PDT

On 18 and 19 October, the CIMdata PLM Road Map and PDT 2022 Conference is scheduled as an in-person event in Gothenburg.

The agenda is almost secured and can be found here.

It will be a conference with guidance from CIMdata and Eurostep completed with major Aerospace, Defense and Automotive companies sharing their experience towards a model-based and digital enterprise.

So no marketing but real content; however, there will also be forward-looking presentations related to new PLM paradigms and the relation to data and sustainability.

So if you are curious, come to his conference as you will be triply rewarded: by the content, the keynotes and discussions with your peers.

Register before September 12 to benefit from a 15 % Early Bird discount, which you can spend for the dinner after day 1. The conference dinner has always been a good moment for networking and discussion.

 

A Sustainable Future – Seize Opportunities When Someone Else Sees Costs

Last part of this agenda.

On  October 25th, I will participate as a PGGA member in a webinar with Aras, discussing sustainability in more depth compared to our earlier mentioned standard PGGA interview.

Here I will be joined by Patrick Willemsen from Aras. Patrick is the technical director of the Aras EMEA community, and together we will explore how companies aiming to deliver profitable products and solutions also can contribute to a more sustainable future for our planet.

Feel free to subscribe to this free webinar and discuss your thoughts with us in the Q&A session – here is the registration link.

 

Conclusion

No conclusion this time – all thinking is in progress and I hope to see your feedback or contribution to one of these events in person or through social media.

In the last weeks, I had several discussions related to sustainability. What can companies do to become sustainable and prove it? But, unfortunately, there is so much greenwashing at this moment.

Look at this post: 10 Companies and Corporations Called Out For Greenwashing.

Therefore I thought about which practical steps a company should take to prepare for a sustainable future, as the change will not happen overnight. It reminds me of the path towards a digital, model-based enterprise (my other passion). In my post Why Model-Based definition is important for all, I mentioned that MBD (Model-Based Definition) could be considered the first stepping-stone toward a Model-Based enterprise.

The analogy for Material Compliance came after an Aras seminar I watched a month ago. The webinar How PLM Paves the Way for Sustainability with  Insensia (an Aras implementer) demonstrates how material compliance is the first step toward sustainable product development.

Let’s understand why

The first steps

Companies that currently deliver solutions mostly only focus on economic gains. The projects or products they sell need to be profitable and competitive, which makes sense if you want a future.

And this would not have changed if the awareness of climate impact has not become apparent.

First, CFKs and hazardous materials lead to new regulations. Next global agreements to fight climate change – the Paris agreement and more to come – have led and will lead to regulations that will change how products will be developed. All companies will have to change their product development and delivery models when it becomes a global mandate.

A required change is likely going to happen. In Europe, the Green Deal is making stable progress. However, what will happen in the US will be a mystery as even their supreme court becomes a political entity against sustainability (money first).

Still, compliance with regulations will be required if a company wants to operate in a global market.

What is Material Compliance?

In 2002, the European Union published a directive to restrict hazardous substances in materials. The directive, known as RoHS (Restriction of Hazardous Substances), was mainly related to electronic components. In the first directive, six hazardous materials were restricted.

The most infamous are Cadmium(Cd), Lead(Pb), and Mercury (Hg). In 2006 all products on the EU market must pass RoHS compliance, and in 2011 was now connected the CE marking of products sold in the European market was.

In 2015 four additional chemical substances were added, most softening PVC but also affecting the immune system. Meanwhile, other countries have introduced similar RoHS regulations; therefore, we can see it as a global restricting. Read more here: The RoHS guide.

Consumers buying RoHS-compliant products now can be assured that none of the threshold values of the substances is reached in the product. The challenge for the manufacturer is to go through each of the components of the MBOM. To understand if it contains one of the ten restricted substances and, if yes, in which quantity.

Therefore, they need to get that information from each relevant supplier a RoHS declaration.

Besides RoHS, additional regulations protect the environment and the consumer. For example, REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) compliance deals with the regulations created to improve the environment and protect human health. In addition, REACH addresses the risks associated with chemicals and promotes alternative methods for the hazard assessment of substances.

The compliance process in four steps

Material compliance is most of all the job of engineers. Therefore around 2005, some of my customers started to add RoHS support to their PLM environment.

 

Step 1

The image below shows the simple implementation – the PDF-from from the supplier was linked to the (M)BOM part.

An employee had to manually add the substances into a table and ensure the threshold values were not reached. But, of course, there was already a selection of preferred manufacturer parts during the engineering phase. Therefore RoHS compliance was almost guaranteed when releasing the EBOM.

But this process could be done more cleverly.

 

Step 2

So the next step was that manufacturers started to extend their PLM data model with the additional attributes for RoHS compliance. Again, this could be done cleverly or extremely generic, adding the attributes to all parts.

So now, when receiving the material declaration, a person just has to add the substance values to the part attributes. Then, through either standard functionality or customization, a compliance report could be generated for the (M)BOM. So this already saves some work.

 

Step 3

The next step was to provide direct access to these attributes to the supplier and push the supplier to do the work.

Now the overhead for the manufacturer has been reduced again. This is because only the supplier needs to do the job for his customer.

 

Step 4

In step 4, we see a real connected environment, where information is stored only once, referenced by manufacturers, and kept actual by the part suppliers.

Who will host the RoHS databank? From some of my customer projects, I recall IHS as a data provider – it seems they are into this business when you look at their website HERE.

 

Where is your company at this moment?

Having seen the four stepping-stones leading towards efficient RoHS compliance, you see the challenge of moving from a document-driven approach to a data-driven approach.

Now let’s look into the future. Concepts like Life Cycle Assessment (LCA) or a Digital Product Passport (DPP) will require a fully connected approach.

Where is your company at this moment – have you reached RoHS compliance step 3 or 4? A first step to learn and work connected and data-driven.

 

Life Cycle Assessment – the ultimate target

A lifecycle assessment, or lifecycle analysis (two times LCA again), is a methodology to assess the environmental impact of a product (or solution) through its whole lifecycle. From materials sourcing, manufacturing, transportation, usage, service, and decommissioning. And by assessing, we mean a clear, verifiable, and shareable manner, not just guessing.

Traditional engineering education is not bringing these skills, although LCA is not new, as this 10-years old YouTube movie from Autodesk illustrates:

What is new is that due to global understanding, we are reaching the limits of what our planet can endure; we must act now. Upcoming international regulations will enforce life cycle analysis reporting for manufacturers or service providers. This will happen gradually.

Meanwhile, we all should work on a circular economy, the major framework for a sustainable planet- click on the image on the left.

In my post, I wrote about these combined topics: SYSTEMS THINKING – a must-have skill in the 21st century.

 

Life Cycle Analysis – Digital Twin – Digitization

The big elephant in the room is that when we talk about introducing LCA in your company, it has a lot to do with the digitization of your company. Assessment data in a document can require too much human effort to maintain the data at the right quality. The costs are not affordable if your competitor is more efficient.

When coming to the Analysis part, here, a model-based, data-driven infrastructure is the most efficient way to run virtual analysis, using digital twin concepts at each stage of the product lifecycle.

Virtual models for design, manufacturing and operations allow your company to make trade-off studies with low cost before committing to the physical world. 80 % of the environmental impact of a product comes from decisions in the virtual world.

Once you have your digital twins for each phase of the product lifecycle, you can benchmark your models with data reported from the physical world. All these interactions can be found in the beautiful Boeing diamond below, which I discussed before – Read A digital twin for everybody.

 

Conclusion

Efficient and sustainable life cycle assessment and analysis will come from connected information sources. The old document-driven paradigm is too costly and too slow to maintain. In particular, when the scope is not only a subset of your product, it is your full product and its full lifecycle with LCA. Another stepping stone towards the near future. Where are you?

 

Stepping-stone 1:            From Model-Based Definition to an efficient Model-Based, Data-driven Enterprise

Stepping-stone 2:            For RoHS compliance to an efficient and sustainable Model-Based, data-driven enterprise.

A month ago, I wrote: It is time for BLM – PLM is not dead, which created an anticipated discussion. It is practically impossible to change a framed acronym. Like CRM and ERP, the term PLM is there to stay.

However, it was also interesting to see that people acknowledge that PLM should have a business scope and deserves a place at the board level.

The importance of PLM at business level is well illustrated by the discussion related to this LinkedIn post from Matthias Ahrens referring to the CIMdata roadmap conference CEO discussion.

My favorite quote:

Now it’s ‘lifecycle management,’ not just EDM or PDM or whatever they call it. Lifecycle management is no longer just about coming up with new stuff. We’re seeing more excitement and passion in our customers, and I think this is why.”

But it is not that simple

This is a perfect message for PLM vendors to justify their broad portfolio. However, as they do not focus so much on new methodologies and organizational change, their messages remain at the marketing level.

In the field, there is more and more awareness that PLM has a dual role. Just when I planned to write a post on this topic, Adam Keating, CEO en founder of CoLab, wrote the post System of Record meet System of Engagement.

Read the post and the comments on LinkedIn. Adam points to PLM as a System of Engagement, meaning an environment where the actual work is done all the time. The challenge I see for CoLab, like other modern platforms, e.g., OpenBOM, is how it can become an established solution within an organization. Their challenge is they are positioned in the engineering scope.

I believe for these solutions to become established in a broader customer base, we must realize that there is a need for a System of Record AND System(s) of Engagement.

In my discussions related to digital transformation in the PLM domain, I addressed them as separate, incompatible environments.

See the image below:

Now let’s have a closer look at both of them

What is a System of Record?

For me, PLM has always been the System of Record for product information. In the coordinated manner, engineers were working in their own systems. At a certain moment in the process, they needed to publish shareable information, a document(e.g., PDF) or BOM-table (e.g., Excel). The PLM system would support New Product Introduction processes, Release and Change Processes and the PLM system would be the single point of reference for product data.

The reason I use the bin-image is that companies, most of the time, do not have an advanced information-sharing policy. If the information is in the bin, the experts will find it. Others might recreate the same information elsewhere,  due to a lack of awareness.

Most of the time, engineers did not like PLM systems caused by integrations with their tools. Suddenly they were losing a lot of freedom due to check-in / check-out / naming conventions/attributes and more. Current PLM systems are good for a relatively stable product, but what happens when the product has a lot of parallel iterations (hardware & software, for example). How to deal with Work In Progress?

Last week I visited the startup company PAL-V in the context of the Dutch PDM Platform. As you can see from the image, PAL-V is working on the world’s first Flying Car Production Model. Their challenge is to be certified for flying (here, the focus is on the design) and to be certified for driving (here, the focus is on manufacturing reliability/quality).

During the PDM platform session, they showed their current Windchill implementation, which focused on managing and providing evidence for certification. For this type of company, the System of Record is crucial.

Their (mainly) SolidWorks users are trained to work in a controlled environment. The Aerospace and Automotive industries have started this way, which we can see reflected in current PLM systems.

Image: Aras impression of the digital thread

And to finish with a PLM buzzword: modern systems of record provide a digital thread.

 

What is a System of Engagement?

The characteristic of a system of engagement is that it supports the user in real-time. This could be an environment for work in progress. Still, more importantly, all future concepts from MBSE, Industry 4.0 and Digital Twins rely on connected and real-time data.

As I previously mentioned, Digital Twins do not run on documents; they run on reliable data.

A system of engagement is an environment where different disciplines work together, using models and datasets. I described such an environment in my series The road to model-based and connected PLM. The System of Engagement environment must be user-friendly enough for these experts to work.

Due to the different targets of a system engagement, I believe we have to talk about Systems of Engagement as there will be several engagement models on a connected (federated) set of data.

Yousef Hooshmand shared the Daimler paper: “From a Monolithic PLM Landscape to a Federated Domain and Data Mesh” in that context. Highly recommended to read if you are interested in a potential PLM future infrastructure.

Let’s look at two typical Systems of Engagement without going into depth.

The MBSE System of Engagement

In this environment, systems engineering is performed in a connected manner, building connected artifacts that should be available in real-time, allowing engineers to perform analysis and simulations to construct the optimal virtual solution before committing to physical solutions.

It is an iterative environment. Click on the image for an impression.

The MBSE space will also be the place where sustainability needs to start. Environmental impact, the planet as a stakeholder,  should be added to the engineering process. Life Cycle Assessment (LCA) defining the process and material choices will be fed by external data sources, for example, managed by ecoinvent, Higg and others to come. It is a new emergent market.

The Digital Twin

In any phase of the product lifecycle, we can consider a digital twin, a virtual data-driven environment to analyze, define and optimize a product or a process. For example, we can have a digital twin for manufacturing, fulfilling the Industry 4.0 dreams.

We can have a digital twin for operation, analyzing, monitoring and optimizing a physical product in the field. These digital twins will only work if they use connected and federated data from multiple sources. Otherwise, the operating costs for such a digital twin will be too high (due to the inefficiency of accurate data)

In the end, you would like to have these digital twins running in a connected manner. To visualize the high-level concept, I like Boeing’s diamond presented by Don Farr at the PDT conference in 2018 – Image below:

Combined with the Daimler paper “From a Monolithic PLM Landscape to a Federated Domain and Data Mesh.” or the latest post from Oleg Shilovistky How PLM Can Build Ontologies? we can start to imagine a Systems of Engagement infrastructure.

 

You need both

And now the unwanted message for companies – you need both: a system of record and potential one or more systems of engagement. A System of Record will remain as long as we are not all connected in a blockchain manner. So we will keep producing reports, certificates and baselines to share information with others.

It looks like the Gartner bimodal approach.

An example: If you manage your product requirements in your PLM system as connected objects to your product portfolio, you will and still can generate a product specification document to share with a supplier, a development partner or a certification company.

So do not throw away your current System of Record. Instead, imagine which types of Systems of Engagement your company needs. Most Systems of Engagement might look like a siloed solution; however, remember they are designed for the real-time collaboration of a certain community – designers, engineers, operators, etc.

The real challenge will be connecting them efficiently with your System of Record backbone, which is preferable to using standard interface protocols and standards.

 

The Hybrid Approach

For those of you following my digital transformation story related to PLM, this is the point where the McKinsey report from 2017 becomes actual again.

 

Conclusion

The concepts are evolving and maturing for a digital enterprise using a System of Record and one or more Systems of Engagement. Early adopters are now needed to demonstrate these concepts to agree on standards and solution-specific needs. It is time to experiment (fast). Where are you in this process of learning?

 

 

 

 

 

 

 

 

 

Yes, it is not a typo. Clayton Christensen famous book written in 1995 discussed the Innovator’s Dilemma when new technologies cause great firms to fail. This was the challenge two decades ago. Existing prominent companies could become obsolete quickly as they were bypassed by new technologies.

The examples are well known. To mention a few: DEC (Digital Equipment Corporation), Kodak, and Nokia.

Why the innovation dilemma?

This decade the challenge has become different. All companies are forced to become more sustainable in the next ten years. Either pushed by global regulations or because of their customer demands. The challenge is this time different. Besides the priority of reducing greenhouse gas emissions, there is also the need to transform our society from a linear, continuous growth economy into a circular doughnut economy.

The circular economy makes the creation, the usage and the reuse of our products more complex as the challenge is to reduce the need for raw materials and avoid landfills.

The circular economy concept – the regular product lifecycle in the middle

The doughnut economy makes the values of an economy more complex as it is not only about money and growth, human and environmental factors should also be considered.

Doughnut Economics: Trying to stay within the green boundaries

To manage this complexity, I wrote SYSTEMS THINKING – a must-have skill in the 21st century, focusing on the logical part of the brain. In my follow-up post, Systems Thinking: a second thought, I looked at the human challenge. Our brain is not rational and wants to think fast to solve direct threats. Therefore, we have to overcome our old brains to make progress.

An interesting and thought-provoking was shared by Nina Dar in this discussion, sharing the video below. The 17 Sustainability Development Goals (SDGs) describe what needs to be done. However, we also need the Inner Development Goals (IDGs) and the human side to connect. Watch the movie:

Our society needs to change and innovate; however, we cannot. The Innovation Dilemma.

The future is data-driven and digital.

What is clear to me is that companies developing products and services have only one way to move forward: becoming data-driven and digital.

Why data-driven and digital?

Let’s look at something companies might already practice, REACH (Registration, Evaluation, Authorization and Restriction of Chemicals). This European directive, introduced in 2007, had the aim to protect human health and protect the environment by communicating information on chemicals up and down the supply chain. This would ensure that manufacturers, importers, and their customers are aware of information relating to the health and safety of the products supplied.

The regulation is currently still suffering in execution as most of the reporting and evaluation of chemicals is done manually. Suppliers report their chemicals in documents, and companies report the total of chemicals in their summary reports. Then, finally, authorities have to go through these reports.

Where the scale of REACH is limited, the manual effort to have end-to-end reporting is relatively high. In addition, skilled workers are needed to do the job because reporting is done in a document-based manner.

Life Cycle Assessments (LCA)

Where you might think REACH is relatively simple, the real new challenges for companies are the need to perform Life Cycle Assessments for their products. In a Life Cycle Assessment. The Wiki definition of LCA says:

Life cycle assessment or LCA (also known as life cycle analysis) is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case of a manufactured product, environmental impacts are assessed from raw material extraction and processing (cradle), through the product’s manufacture, distribution and use, to the recycling or final disposal of the materials composing it (grave)

This will be a shift in the way companies need to define products. Much more thinking and analysis are required in the early design phases. Before committing to a physical solution, engineers and manufacturing engineers need to simulate and calculate the impact of their design decisions in the virtual world.

This is where the digital twin of the design and the digital twin of the manufacturing process becomes relevant. And remember: Digital Twins do not run on documents – you need connected data and various types of models to calculate and estimate the environmental impact.

LCA done in a document-based manner will make your company too slow and expensive.

I described this needed transformation in my series from last year: The road to model-based and connected PLM – nine posts exploring the technology and concept of a model-based, data-driven PLM infrastructure.

Digital Product Passport (DPP)

The European Commission has published an action plan for the circular economy, one of the most important building blocks of the European Green Deal. One of the defined measures is the gradual introduction of a Digital Product Passport (DPP). As the quality of an LCA depends on the quality and trustworthy information about products and materials, the DPP is targeting to ensure circular economy metrics become reliable.

This will be a long journey. If you want to catch a glimpse of the complexity, read this Medium article: The digital product passport and its technical implementation related to the DPP for batteries.

The innovation dilemma

Suppose you agree with my conclusion that companies need to change their current product or service development into a data-driven and model-based manner. In that case, the question will come up: where to start?

Becoming data-driven and model-based, of course, is not the business driver. However, this change is needed to be able to perform Life Cycle Assessments and comply with current and future regulations by remaining competitive.

A document-driven approach is a dead-end.

Now let’s look at the real dilemmas by comparing a startup (clean sheet / no legacy) and an existing enterprise (experience with the past/legacy). Is there a winning approach?

The Startup

Having lived in Israel – the nation where almost everyone is a startup – and working with startups afterward in the past 10 years, I always get inspired by these people’s energy in startup companies. They have a unique value proposition most of the time, and they want to be visible on the market as soon as possible.

This approach is the opposite of systems thinking. It is often a very linear process to deliver this value proposition without exploring the side effects of such an approach.

For example, the new “green” transportation hype. Many cities now have been flooded with “green” scooters and electric bikes to promote transportation as a service. The idea behind this concept is that citizens do not require to own polluting motorbikes or cars anymore, and transportation means will be shared. Therefore, the city will be cleaner and greener.

However, these “green” vehicles are often designed in the traditional linear way. Is there a repair plan or a plan to recycle the batteries? Reuse of materials used.? Most of the time, not. Please, if you have examples contradicting my observations, let me know. I like to hear good news.

When startup companies start to scale, they need experts to help them grow the company. Often these experts are seasoned people, perhaps close to retirement. They will share their experience and what they know best from the past:  traditional linear thinking.

As a result, even though startup companies can start with a clean sheet, their focus on delivering the product or service blocks further thinking. Instead, the seasoned experts will drive the company towards ways of working they know from the past.

Out of curiosity: Do you know or work in a startup that has started with a data-driven and model-based vision from scratch?  Please add the name of this company in the comments, and let’s learn how they did it.

The Existing company

Working in an established company is like being on board a big tanker. Changing its direction takes a clear eye on the target and navigation skills to come there. Unfortunately, most of the time, these changes take years as it is impossible to switch the PLM infrastructure and the people skills within a short time.

From the bimodal approach in 2015 to the hybrid approach for companies, inspired by this 2017 McKinsey article: Toward an integrated technology operating model, I discovered that this is probably the best approach to ensure a change will happen. In this approach – see image – the organization keeps running on its document-driven PLM infrastructure. This type of infrastructure becomes the system of record. Nothing different from what PLM currently is in most companies.

In parallel, you have to start with small groups of people who independently focus on a new product, a new service. Using the model-based approach, they work completely independently from the big enterprise in a data-driven approach. Their environment can be considered the future system of engagement.

The data-driven approach allows all disciplines to work in a connected, real-time manner. Mastering the new ways of working is usually the task of younger employees that are digital natives. These teams can be completed by experienced workers who behave as coaches. However, they will not work in the new environment; these coaches bring business knowledge to the team.

People cannot work in two modes, but organizations can. As you can see from the McKinsey chart, the digital teams will get bigger and more important for the core business over time. In parallel, when their data usage grows, more and more data integration will occur between the two operation modes. Therefore, the old PLM infrastructure can remain a System of Record and serve as a support backbone for the new systems of engagement.

The Innovation Dilemma conclusion

The upcoming ten years will push organizations to innovate their ways of working to become sustainable and competitive. As discussed before, they must learn to work in a data-driven, connected manner. Both startups and existing enterprises have challenges – they need to overcome the “thinking fast and acting slow” mindset. Do you see the change in your company?

 

Note: Before publishing this post, I read this interesting and complementary post from Jan Bosch Boost your digitalization: instrumentation.

It is in the air – grab it.

 

Two weeks ago, I wrote a generic post related to System Thinking, in my opinion, a must-have skill for the 21st century (and beyond). Have a look at the post on LinkedIn; in particular interesting to see the discussion related to Systems Thinking: a must-have skill for the 21st century.

I liked Remy Fannader’s remark that thinking about complexity was not something new.

This remark is understandable from his personal context. Many people enjoy thinking – it was a respected 20th-century skill.

However, I believe, as Daniel Kahneman describes in his famous book: Thinking Fast and Slow, our brain is trying to avoid thinking.

This is because thinking consumes energy, the energy the body wants to save in the case of an emergency.

So let’s do a simple test (coming from Daniel):

xx

A bat and a ball cost together $ 1.10 –  the bat costs one dollar more than the ball. So how much does the ball cost?

Look at the answer at the bottom of this post. If you have it wrong, you are a fast thinker. And this brings me to my next point. Our brain does not want to think deeply; we want fast and simple solutions. This is a challenge in a complex society as now we hear real-time information coming from all around the world. What is true and what is fake is hard to judge.

However, according to Kahneman, we do not want to waste energy on thinking. We create or adhere to simple solutions allowing our brains to feel relaxed.

This human behavior has always been exploited by populists and dictators: avoid complexity because, in this way, you lose people. Yuval Harari builds upon this with his claim that to align many people, you need a myth. I wrote about the need for myths in the PLM space a few times, e.g., PLM as a myth? and The myth perception

And this is where my second thoughts related to Systems Thinking started. Is the majority of people able and willing to digest complex problems?

My doubts grew bigger when I had several discussions about fighting climate change and sustainability.

 

 

Both Brains required

By coincidence, I bumped on this interesting article Market-led Sustainability is a ‘Fix that Fails’…

I provided a link to the post indirectly through LinkedIn. If you are a LinkedIn PLM Global Green Alliance member, you can see below the article an interesting analysis related to market-led sustainability, system thinking and economics.

Join the PLM Global Green Alliance group to be part of the full discussion; otherwise, I recommend you visit Both Brains Required, where you can find the source article and other related content.

It is a great article with great images illustrating the need for systems thinking and sustainability. All information is there to help you realize that sustainability is not just a left-brain exercise.

The left brain is supposed to be logical and analytical. That’s systems thinking, you might say quickly. However, the other part of our brain is about our human behavior, and this side is mostly overlooked. My favorite quote from the article:

Voluntary Market-Led activities are not so much a solution to the sustainability crisis as a symptom of more profoundly unsustainable foundations of human behavior.

The article triggered my second thoughts related to systems thinking. Behavioral change is not part of systems thinking. It is another dimension harder to address and even harder to focus on sustainability.

The LinkedIn discussion below the article Market-led Sustainability is a ‘Fix that Fails’… is a great example of the talks we would like to have in our PLM Global Green Alliance group. Nina Dar, Patrick Hillberg and Richard McFall brought in several points worth discussing. Too many to discuss them all here – let’s take two fundamental issues:

1. More than economics

An interesting viewpoint in this discussion was the relation to economics. We don’t believe that economic growth is the main point to measure. Even a statement like:  “Sustainable businesses will be more profitable than traditional ones” is misleading when companies are measured by shareholder value or EBIT (Earnings Before Interest or Taxes). We briefly touched on Kate Raworth’s doughnut economics.

This HBR article mentioned in the discussion: Business Schools Must Do More to Address the Climate Crisis also shows it is not just about systems thinking.
We discussed the challenges of supply chains, not about resilience but about sustainability. Where an OEM can claim to be sustainable, there are often not aware of what happens at the level of their suppliers. As the OEM measure their suppliers mostly on Quality/Reliability and Cost, they usually do not care about local human issues or sustainability issues.

We have seen this in the Apparel industry with the horrible collapse of a factory in Bangladesh  (2013). Still, the inhumane accidents happen in southeast Asia. I like to quote Chris Calverley in his LinkedIn article: Making ethical apparel supply chains achievable on a global scale.

 

No one gets into business because they want to behave unethically. On the contrary, a lack of ethics is usually driven by a common desire to operate more efficiently and increase profit margins. 

In my last post, I shared a similar example from an automotive tier 2  supplier. Unfortunately, suppliers are not measured or rewarded for sustainability efforts; only efficiency and costs are relevant.

The seventeen Sustainability Development Goals (SDG), as defined by the United Nations, are the best guidance for sustainable drivers beyond money. Supporting the SDGs enforce systems thinking when developing a part, a product, or a solution. Many other stakeholders need to be taken care of, at least if you truly support sustainability as a company.

2. The downside of social media

The LinkedIn discussion related to Market-led Sustainability is a ‘Fix that Fails’… The thread shows that LinkedIn, like other social media, is not really interested in supporting in-depth discussions – try to navigate what has been said in chronological order. With Patrick, Nina and Richard, we agreed to organize a follow-up discussion in our PLM Global Green Alliance Group.

And although we are happy with social media as it allows each of us to reach a global audience, there seems to be a worrying contra-productive impact. If you read the book Stolen Focus. A quote:

All over the world, our ability to pay attention is collapsing. In the US, college students now focus on one task for only 65 seconds, and office workers, on average, manage only three minutes

This is worrying, returning to Remy Fannader’s remark: thinking about complexity was not something new. The main difference is that it is not new. However, our society is changing towards thinking too fast, not rewarding systems thinking.

Even scarier, if you have time, read this article from The Atlantic: about the impact of social media on the US Society. It is about trust in science and data. Are we facing the new (Trump) Tower of Babel in our modern society? As the writers state: Babel is a metaphor for what some forms of social media have done to nearly all of the groups and institutions most important to the country’s future—and to us as a people.

 

I have talked in previous posts about the Dunner-Kruger effect, something that is blocking systems thinking. The image to the left says it all. Due to social media and the safe place behind a keyboard, many of us consider ourselves confident experts explaining to the real expert why they are wrong. For addressing the topics of sustainability and climate change, this attitude is killing. It is the opposite of systems thinking, which costs energy.

xx

Congratulations

support

The fact that you reached this part of the post means your attention span has been larger than 3 minutes, showing there is hope for people like you and me. As an experiment to discover how many people read the post till here, please answer with the “support” icon if you have reached this part of the post.

I am curious to learn how many of us who saw the post came here.

 

Conclusion

Systems Thinking is a must-have skill for the 21st century. Many of us working in the PLM domain focus on providing support for systems thinking, particularly Life Cycle Assessment capabilities. However, the discussion with Patrick Hillberg, Nina Darr and Richard McFall made me realize there is more: economics and human behavior. For example, can we change our economic models, measuring companies not only for the money profit they deliver? What do?

Answering this type of question will be the extended mission for PLM consultants of the future – are you ready?

 

The answer to the question with the ball and the bat:

A fast answer would say the price of the ball is 10 cents. However, this would make the price of the bat $1.10, giving a total cost of $1.20. So the right answer should be 5 cents. To be honest, I got tricked the first time too. Never too late to confirm you make mistakes, as only people who do not do anything make no mistakes.

Sustainability has been already a topic on my agenda for many years. So when Rich McFall asked me to start the PLM Global Green Alliance (PGGA) in 2018, I supported that initiative. You can read more about my PLM and Sustainability ideas in this post here.

I have been lecturing about the relation between PLM and Sustainability last year. In 2018, the PGGA was a niche alliance trying to find people who would like to work and share PLM-related practices with others for a greener and sustainable planet.

Thanks to, or actually due to, the pandemic, climate disasters and the return of the US supporting the Paris Climate agreements, it became clear companies need to act. And preferably as soon as possible, which led to sustainability activities in many companies.

Also, the main PLM vendors started to publish their support and vision for a sustainable future, the area where we believe the PGGA can contribute in spreading the practices and experiences.

For that reason, the PGGA is aiming this year to have a series of discussions with the main PLM Vendors and their sustainability programs.

SAP

This time we are happy to publish an interview with Darren West from SAP. Darren West is the product management lead for SAP’s Circular Economy solutions. His role is to work with customers, sales and pre-sales colleagues, partners, solutions teams and product owners to expand existing and build new sustainability products, particularly those impacting Circular Economy topics.

We are glad to speak with Darren, as we believe sustainability and the circular economy go hand in hand and it requires systems thinking. We believe SAP, strong in managing materials and manufacturing processes, should be a leader in providing insights in ESG reporting. Helping companies to improve their environmental impact of products and production processes as they have the data.

Have a look at this 34 minutes interview and discussion with Darren West

The slides shown in this recording can be found  here: Circular Economy -SAP for PLM Green Alliance

What we have learned

The interview showed that SAP is actively working on a sustainable future. Both by acting by themselves, but even more important, by helping their customers to change to more sustainable designs and production methods. There is still a way to go and we do not have too much time to sit back. The power of the current SAP Responsible Design and Production module is that it allows companies to understand their environmental impact and improve where possible. This is step 1 in my opinion to find a way to create sustainable products and business models.

The second, more general observation, is that we need to make our full product lifecycle management digital and connected. Data-driven is the only way to have efficient processes to estimate and calculate our environmental impact – my favorite From Coordinated to Connected topic.

Want to learn more?

In the context of this recording, Daren shared the following links for those of you who got inspired by the discussion (in alphabetical order):

Conclusion

This was a motivating session to see PLM-related vendors are taking action. Next time, you will learn more from the design side when we talk with Autodesk about their sustainability program.

Unfortunately the day after this motivating session we were shocked by the invasion of Ukraine by Russia.  So I am in a mixed mood, as having friends in both countries makes me realize that one dictator can kill people and hope.

Listen to president Zelensky’s speech to the Russian people and get inspired to act against any brainwashing or dictatorship. To my friends and readers, wherever you are, stay strong, informed and human.


 

After all my writing about The road to model-based and connected PLM, a topic that interests me significantly is the positive contribution real PLM can have to sustainability.

To clarify this statement, I have to explain two things:

  • First, for me, real PLM is a strategy that concerns the whole product lifecycle from conception, creation, usage, and decommissioning.

Real PLM to articulate the misconception that PLM is considered as an engineering infrastructure of even system. We discussed this topic related to this post (7 easy tips nobody told you about PLM adoption) from my SharePLM peers.

  • Second, sustainability should not be equated with climate change, which gets most of the extreme attention.

However, the discussion related to climate change and carbon gas emissions drew most of the attention. Also, recently it seemed that the COP26 conference was only about reducing carbon emissions.

Unfortunately, reducing carbon gas emissions has become a political and economic discussion in many countries. As I am not a climate expert, I will follow the conclusions of the latest IIPC report.

However, I am happy to participate in science-based discussions, not in conversations about failing statistics (lies, damned lies and statistics) or the mixture of facts & opinions.

The topic of sustainability is more extensive than climate change. It is about understanding that we live on a limited planet that cannot support the unlimited usage and destruction of its natural resources.

Enough about human beings and emotions, back to the methodology

Why PLM and Sustainability

In the section PLM and Sustainability of the PLM Global Green Alliance website,  we explain the potential of this relation:

The goals and challenges of Product Lifecycle Management and Sustainability share much in common and should be considered synergistic. Where in theory, PLM is the strategy to manage a product along its whole lifecycle, sustainability is concerned not only with the product’s lifecycle but should also address sustainability of the users, industries, economies, environment and the entire planet in which the products operate.

If you read further, you will bump on the term System Thinking. Again there might be confusion here between Systems Thinking and Systems Engineering. Let’s look at the differences

Systems Engineering

For Systems Engineering, I use the traditional V-shape to describe the process. Starting from the Needs on the left side, we have a systematic approach to come to a solution definition at the bottom. Then going upwards on the right side, we validate step by step that the solution will answer the needs.

The famous Boeing “diamond” diagram shows the same approach, complementing the V-shape with a virtual mirrored V-shape. In this way providing insights in all directions between a virtual world and a physical world. This understanding is essential when you want to implement a virtual twin of one of the processes/solutions.

Still, systems engineering starts from the needs of a group of stakeholders. So it works to the best technical and beneficial solution, most of the time only measured by money.

System Thinking

The image below from the Ellen McArthur Foundation is an example of system thinking. But, as you can see, it is not only about delivering a product.

Systems Thinking is a more holistic approach to bringing products to the market. It is about how we deliver a product to the market and what happens during its whole life cycle. The drivers for system thinking, therefore, are not only focusing on product performance at the most economical price, but we also take into account the impact on resource extraction in the world, the environmental impact during its active life (more and more regulated) and ultimately also how to minimize the waste to the eco-system. This means more recycling or reuse.

If you want to read more about systems thinking more professionally, read this blog post from the Millennium Alliance for Humanity and the Biosphere (MAHB) related to Systems Thinking: A beginning conversation.

Product as a Service (PaaS)

To ensure more responsibility for the product lifecycle, one of the European Green Deal aspects is promoting Product as a Service. There is already a trend towards products as a service, and I mentioned Ken Webster’s presentation at the PLM Roadmap & PDT Fall 2021 conference: In the future, you will own nothing, and you will be happy.

Because if we can switch to such an economy, the manufacturer will have complete control over the product’s lifecycle and its environmental impact. The manufacturer will be motivated to deliver product upgrades, create repairable products instead of dumping old or broken stuff because this is cheap for selling. PaaS brings opportunities for manufacturers, like greater customer loyalty, but also pushes manufacturers to stay away from so-called “greenwashing”. They become fully responsible for the entire lifecycle.

A different type of growth

The concept of Product as a Service is not something that typical manufacturing companies endorse. Instead, it requires them to restructure their business and restructure their product.

Delivering a Product as a Service requires a fast feedback loop between the products in the field and R&D deciding on improving or adding new features.

In traditional manufacturing companies, the service department is far from engineering due to historical reasons. However, with the digitization of our product information and connected products, we should be able to connect all stakeholders related to our products, even our customers.

A few years ago, I was working with a company that wanted to increase their service revenue by providing maintenance as a service on their products on-site. The challenge they had was that the total installation delivered at the customer site was done through projects. There was some standard equipment in their solution; however, ultimately, the project organization delivered the final result, and product information was scattered all around the company.

There was some resistance when I proposed creating an enterprise product information backbone (a PLM infrastructure) with aligned processes.  It would force people to work upfront in a coordinated manner. Now with the digitization of operations, this is no longer a point of discussion.

In this context, I will participate on December 7th in an open panel discussion Creating a Digital Enterprise: What are the Challenges and Where to Start? As part of the PI DX spotlight series. I invite you to join this event if you are interested in hearing various digital enterprise viewpoints.

Doing both?

As companies cannot change overnight, the challenge is to define a transformation path. The push for transformation for sure will come from governments and investors in the following decades. Therefore doing nothing is not a wise strategy.

Early this year, the Boston Consultancy Group published this interesting article: The Next Generation of Climate Innovation, showing different pathways for companies.

A trend that they highlighted was the fact that Shareholder Returns over the past ten years are negative for the traditional Oil & Gas and Construction industries (-18 till -6 %). However, the big tech and first generation of green industries provide high shareholders returns (+30 %), and the latest green champions are moving in that direction. In this way, promoting investors will push companies to become greener.

The article talks about the known threat of disrupters coming from outside. Still, it also talks about the decisions companies can make to remain relevant. Either you try to reduce the damage, or you have to innovate. (Click on the image below on the left).

As described before, innovating your business is probably the most challenging part. In particular, if you have many years of history in your industry. Processes and people are engraved in an almost optimal manner (for now).

An example of reducing the damage could be, for example, what is happening in the steel industry. As making steel requires a lot of (cheap) energy, this industry is powered by burning coal. Therefore, an innovation to reduce the environmental impact would be to redesign the process with green energy as described in this Swedish example: The first fossil-free production of steel.

On December 9th, I will discuss both strategies with Henrik Hulgaard from Configit. We will discuss how Product Lifecycle Management and Configuration Lifecycle Management can play a role in the future. Feel free to subscribe to this session and share your questions. Click on the image to see the details.

Note:  you might remember Henrik from my earlier post this year in January: PLM and Product Configuration Management (CLM)

Conclusion

Sustainability is a topic that will be more and more relevant for all of us, locally and globally. Real PLM, covering the whole product lifecycle, preferably data-driven, allows companies to transform their current business to future sustainable business. Systems Thinking is the overarching methodology we have to learn – let’s discuss

Translate

Categories

  1. Jos, one could take the approach that there is an engineering transformation strategy that can be realized by implementing PLM…

  2. Jos, I agree we should break out from the monolithic approach as this typically means lock-in, risk and frustration. The…

  3. Jos, Thanks for these insights. I believe that the mature capabilities provided by advanced toolsets can also be of benefit…

%d bloggers like this: