Last week I shared my first review of the PLM Roadmap / PDT Fall 2020 conference, organized by CIMdata and Eurostep. Having digested now most of the content in detail, I can state this was the best conference of 2020. In my first post, the topics I shared were mainly the consultant’s view of digital thread and digital twin concepts.

This time, I want to focus on the content presented by the various Aerospace & Defense working groups who shared their findings, lessons-learned (so far) on topics like the Multi-view BOM, Supply Chain Collaboration, MBSE Data interoperability.

These sessions were nicely wrapped with presentations from Alberto Ferrari (Raytheon), discussing the digital thread between PLM and Simulation Lifecycle Management and Jeff Plant (Boeing) sharing their Model-Based Engineering strategy.

I believe these insights are crucial, although there might be people in the field that will question if this research is essential. Is not there an easier way to achieve to have the same results?

Nicely formulated by Ilan Madjar as a comment to my first post:

Ilan makes a good point about simplifying the ideas to the masses to make it work. The majority of companies probably do not have the bandwidth to invest and understand the future benefits of a digital thread or digital twins.

This does not mean that these topics should not be studied. If your business is in a small, simple eco-system and wants to work in a connected mode, you can choose a vendor and a few custom interfaces.

However, suppose you work in a global industry with an extensive network of partners, suppliers, and customers.

In that case, you cannot rely on ad-hoc interfaces or a single vendor. You need to invest in standards; you need to study common best practices to drive methodology, standards, and vendors to align.

This process of standardization is so crucial if you want to have a sustainable, connected enterprise. In the end, the push from these companies will lead to standards, allowing the smaller companies to ad-here or connect to.

The future is about Connected through Standards, as discussed in part 1 and further in this post. Let’s go!

Global Collaboration – Defining a baseline for data exchange processes and standards

Katheryn Bell (Pratt & Whitney Canada) presented the progress of the A&D Global Collaboration workgroup. As you can see from the project timeline, they have reached the phase to look towards the future.

Katheryn mentioned the need to standardize terminology as the first point of attention. I am fully aligned with that point; without a standardized terminology framework, people will have a misunderstanding in communication.

This happens even more in the smaller businesses that just pick sometimes (buzz) terms without a full understanding.

Several years ago, I talked with a PLM-implementer telling me that their implementation focus was on systems engineering. After some more explanations, it appeared they were making an attempt for configuration management in reality. Here the confusion was massive. Still, a standard, common terminology is crucial in our domain, even if it seems academic.

The group has been analyzing interoperability standards, standards for long-time archival and retrieval (LOTAR), but also has been studying the ISO 44001 standard related to Collaborative business relationship management systems

In the Q&A session, Katheryn explained that the biggest problem to solve with collaboration was the risk of working with the wrong version of data between disciplines and suppliers.

Of course, such errors can lead to huge costs if they are discovered late (or too late). As some of the big OEMs work with thousands of suppliers, you can imagine it is not an issue easily discovered in a more ad-hoc environment.

The move to a standardized Technical Data Package based on a Model-Based Definition is one of these initiatives in this domain to reduce these types of errors.

You can find the proceedings from the Global Collaboration working group here.

 

Connect, Trace, and Manage Lifecycle of Models, Simulation and Linked Data: Is That Easy?

I loved Alberto Ferrari‘s (Raytheon) presentation how he described the value of a model-based digital thread, positioning it in a targeted enterprise.

Click on the image and discover how business objectives, processes and models go together supported by a federated infrastructure.

Alberto’s presentation was a kind of mind map from how I imagine the future, and it is a pity if you have not had the chance to see his session.

Alberto also focused on the importance of various simulation capabilities combined with simulation lifecycle management. For Alberto, they are essential to implement digital twins. Besides focusing on standards, Alberto pleas for a semantic integration, open service architecture with the importance of DevSecOps.

Enough food for thought; as Alberto mentioned, he presented the corporate vision, not the current state.

More A&D Action Groups

There were two more interesting specialized sessions where teams from the A&D action groups provided a status update.

Brandon Sapp (Boeing) and Ian Parent (Pratt & Whitney) shared the activities and progress on Minimum Model-Based Definition (MBD) for Type Design Certification.

As Brandon mentioned, MBD is already a widely used capability; however, MBD is still maturing and evolving.  I believe that is also one of the reasons why MBD is not yet accepted in mainstream PLM. Smaller organizations will wait; however, can your company afford to wait?

More information about their progress can be found here.

Mark Williams (Boeing) reported from the A&D Model-Based Systems Engineering action group their first findings related to MBSE Data Interoperability, focusing on an Architecture Model Exchange Solution.  A topic interesting to follow as the promise of MBSE is that it is about connected information shared in models. As Mark explained, data exchange standards for requirements and behavior models are mature, readily available in the tools, and easily adopted. Exchanging architecture models has proven to be very difficult. I will not dive into more details, respecting the audience of this blog.

For those interested in their progress, more information can be found here

Model-Based Engineering @ Boeing

In this conference, the participation of Boeing was significant through the various action groups. As the cherry on the cake, there was Jeff Plant‘s session, giving an overview of what is happening at Boeing. Jeff is Boeing’s director of engineering practices, processes, and tools.

In his introduction, Jeff mentioned that Boeing has more than 160.000 employees in over 65 countries. They are working with more than 12.000 suppliers globally. These suppliers can be manufacturing, service or technology partnerships. Therefore you can imagine, and as discussed by others during the conference, streamlined collaboration and traceability are crucial.

The now-famous MBE Diamond symbol illustrates the model-based information flows in the virtual world and the physical world based on the systems engineering approach. Like Katheryn Bell did in her session related to Global Collaboration, Jeff started explaining the importance of a common language and taxonomy needed if you want to standardize processes.

Zoom in on the Boeing MBE Taxonomy, you will discover the clarity it brings for the company.

I was not aware of the ISO 23247 standard concerning the Digital Twin framework for manufacturing, aiming to apply industry standards to the model-based definition of products and process planning. A standard certainly to follow as it brings standardization on top of existing standards.

As Jeff noted: A practical standard for implementation in a company of any size. In my opinion, mandatory for a sustainable, connected infrastructure.

Jeff presented the slide below, showing their standardization internally around federated platforms.

This slide resembles a lot the future platform vision I have been sharing since 2017 when discussing PLM’s future at PLM conferences, when explaining the differences between Coordinated and Connected – see also my presentation here on Slideshare.

You can zoom in on the picture to see the similarities. For me, the differences were interesting to observe. In Jeff’s diagram, the product lifecycle at the top indicates the platform of (central) interest during each lifecycle stage, suggesting a linear process again.

In reality, the flow of information through feedback loops will be there too.

The second exciting detail is that these federated architectures should be based on strong interoperability standards. Jeff is urging other companies, academics and vendors to invest and come to industry standards for Model-Based System Engineering practices.  The time is now to act on this domain.

It reminded me again of Marc Halpern’s message mentioned in my previous post (part 1) that we should be worried about vendor alliances offering an integrated end-to-end data flow based on their solutions. This would lead to an immense vendor-lock in if these interfaces are not based on strong industry standards.

Therefore, don’t watch from the sideline; it is the voice (and effort) of the companies that can drive standards.

Finally, during the Q&A part, Jeff made an interesting point explaining Boeing is making a serious investment, as you can see from their participation in all the action groups. They have made the long-term business case.

The team is confident that the business case for such an investment is firm and stable, however in such long-term investment without direct results, these projects might come under pressure when the business is under pressure.

The virtual fireside chat

The conference ended with a virtual fireside chat from which I picked up an interesting point that Marc Halpern was bringing in. Marc mentioned a survey Gartner has done with companies in fast-moving industries related to the benefits of PLM. Companies reported improvements in accuracy and product development. They did not see so much a reduced time to market or cost reduction. After analysis, Gartner believes the real issue is related to collaboration processes and supply chain practices. Here lead times did not change, nor the number of changes.

Marc believes that this topic will be really showing benefits in the future with cloud and connected suppliers. This reminded me of an article published by McKinsey called The case for digital reinvention. In this article, the authors indicated that only 2 % of the companies interview were investing in a digital supply chain. At the same time, the expected benefits in this area would have the most significant ROI.

The good news, there is consistency, and we know where to focus for early results.

Conclusion

It was a great conference as here we could see digital transformation in action (groups). Where vendor solutions often provide a sneaky preview of the future, we saw people working on creating the right foundations based on standards. My appreciation goes to all the active members in the CIMdata A&D action groups as they provide the groundwork for all of us – sooner or later.

Last week I was happy to attend the PLM Roadmap / PDT Fall 2020 conference as usual organized by CIMdata and Eurostep. I wrote about the recent PI DX conference, which touched a lot on the surface of PLM and Digital Transformation. This conference is really a conference for those who want to understand the building blocks needed for current and future PLM.

In this conference, usually with approximately 150 users on-site, now with over 250 connected users for 3 (half) days. Many of us, following every session of the conference. As an active participant in the physical events, it was a little disappointing not to be in the same place with the other participants this time. The informal network meetings in this conference have always been special thanks to a relatively small but stable group of experts.  Due to the slightly reduced schedule, there was this time, less attention for some of the typical PDT-topics most of the time coming from Sweden and related to sustainability.

The conference’s theme was Digital Thread—the PLM Professionals’ Path to Delivering Innovation, Efficiency, and Quality and might sound like a marketing statement.  However, the content presented was much more detailed than just marketing info. The fact that you watched the presentation on your screen made it an intense conference with many valuable details.

Have a look at the agenda, and I will walk you through some of the highlights for me. As there was so much content to discuss, I will share this time part 1. Next week, in part 2, you will see the coherence of all the presentations.

As if there was a Coherent Thread.

Digital Twin, It Requires a Digital Thread

Peter Bilello, President & CEO, CIMdata, ‘s keynote with the title Digital Twin, It Requires a Digital Thread was immediately an illustration of discussing reality.  When I stated at the Digital Twin conference in the Netherlands that “Digital Twins do not run on Documents“, it had the same meaning as when Peter stated,” A Digital Twin without a Digital Thread is an orphan”.

Digital Thread

And Peter’s statement, “All companies do PLM, most of the time however disconnected”, is another way to stimulate companies working in a connected manner.

As usual Peter’s session was a good overview of the various aspect related to the Digital Thread and Digital Twin.

Digital Twin

The concept of a virtual twin is not new. The focus is as mentioned before now more on the term “Connected” Peter provided the CIMdata definition for Digital Thread and Digital Twin. Click on the images to the left to read the full definition.

Peter’s overview also referred to the Boeing Diamond, illustrating the mapping of the physical and virtual world, connected through a Digital Thread the various Digital Twins that can exist. The Boeing Diamond was one of the favorites during the conference.

When you look at Peter’s conclusions, there is an alignment with what I wrote in the post: A Digital Twin for Everyone and the fact that we need to strive for a connected enterprise. Only then we can benefit from a Digital Twin concept.

 

The Multi-view BOM Solution Evaluation
– Process, Results, and Industry Impacts

The reports coming from the various A&D PLM action groups are always engaging sessions to watch. Here, nine companies, even competitors, discuss and explore PLM themes between themselves supported by CIMdata.

These companies were the first that implemented PLM; it is interesting to watch how they move forward like supertankers. They cannot jump from one year to another year on a new fashionable hype. Their PLM-infrastructure needs to be consistent and future-proof due to their data’s longevity and the high standards for regulatory compliance and safety.

However, these companies are also pioneers for the future. They have been practicing Model-Based approaches for over ten years already and are still learning. In next week’s post, you will read later that these frontrunners are pushing for standards to make a Model-Based future affordable and achievable.

In that context, the action group Multi-View BOM shared their evaluation results for a study related to the multi-view BOM. A year ago, I wrote about this topic when Fred Feru from Airbus presented the intermediate results at the CIMdata Roadmap/PDT 2019 conference.

Dan Ganser (Gulfstream) and Javier Reines (Airbus) presented the findings. The conclusion was that the four vendors evaluated, i.e., Aras, Dassault Systems, PTC and Siemens, all passed the essential requirements and use cases. You can find the report and the findings here: Multi-view Bill of Materials

One interesting remark.

When the use cases were evaluated, the vendors could score on a level from 0 to 5, see picture. Interesting to see that apparently, it was possible to exceed the requirement, something that seems like a contradiction.

In particular, in this industry, where formal requirements management is a must – either you meet a requirement or not.

Dan Ganser explained that the current use cases were defined based on the minimum expectations, therefore there was the option to exceed the requirement. I still would be curious to see what does it mean to exceed the requirement. Is it usability, time, or something innovative we might have missed?

 

5G for Digital Twins & Shadows

I learned a lot from the presentation from Niels Koenig, working at the Fraunhofer Institute for Production Technology. Niels explained how important 5G is for realizing the Industry 4.0 targets. At the 5G Industry Campus, several projects are running to test and demonstrate the value of 5G in relation to manufacturing.

If you want to get an impression of the 5G Industry Campus – click on the Youube movie.

One of the examples Niels discussed was closed-loop manufacturing. Thanks to the extremely low latency (< 1ms), a connected NC machine can send real-time measurements to be compared with the expected values. For example, in the case of resonance, the cutting might not be smooth. Thanks to the closed-loop, the operator will be able to interfere or adjust the operation. See the image below.

Digital Thread: Be Careful What you Wish For, It Just Might Come True

I was looking forward to Marc Halpern‘s presentation. Marc often brings a less technical viewpoint but a more business-related viewpoint to the discussion. Over the past ten years, there have been many disruptive events, most recently the COVID-pandemic.

Companies are asking themselves how they can remain resilient. Marc shared some of his thoughts on how Digital Twins and Digital Threads can support resilience.

In that context, Gartner saw a trend that their customers are now eagerly looking for solutions related to Digital Twin, Digital Thread, Model-Based Approaches, combined with the aim to move to the cloud. Related to Digital Thread and Digital Twin, most of Gartner’s clients are looking for traceability and transparency along the product lifecycle. Most Digital Twin initiatives focus on a twin of operational assets, particularly inside the manufacturing facility. Nicely linking to Niels Konig’s session related to 5G.

Marc stated that there seems to be a consensus that a Digital Thread is compelling enough for manufacturers to invest. In the end, they will have to. However, there are also significant risks involved. Marc illustrated the two extremes; in reality, companies will end up somewhere in the middle, illustrated later by Jeff Plant from Boeing. The image on the left is a sneaky preview for next week.

When discussing the Digital Thread, Marc again referred to it more as a Digital Net, a kind of connected infrastructure for various different threads based on the various areas of interest.

I show here a slide from Marc’s presentation at the PDT conference in 2018. It is more an artist’s impression of the same concept discussed during this conference again, the Boeing Diamond.

Related to the risk of implementing a Digital Thread and Digital Twin, Marc showed another artistic interpretation; The two extremes of two potential end states of Digital Thread investment. Marc shared the critical risks for both options.

For the Vendor Black Hole, his main points were that if you choose a combined solution, diminished negotiating power, higher implementation costs, and potentially innovative ideas might not be implemented as they are not so relevant for the vendor. They have the power!

As an example of combined solutions Marc mentioned, the recently announced SAP-Siemens partnership, the Rockwell Automation-PTC partnership, the Schneider Electric-Aveva-partnership, and the ABB-Dassault Systemes partnership.

Once you are in the black hole, you cannot escape. Therefore, Marc recommended making sure you do not depend on a few vendors for your Digital Twin infrastructure.

The picture on the left illustrates the critical risks of the Enterprise Architecture “Mess”. It is a topic that I am following for a long time. Suppose you have a collection of services related to the product lifecycle, like Workflow-services, 3D Modeling-services, BOM-services, Manufacturing-services.

Together they could provide a PLM-infrastructure.

The idea behind this is that thanks to openness and connectivity, every company can build its own unique enterprise architecture. No discussion about standard best practices. You build your company’s best practices (for the future, the current ?)

It is mainly promoted as a kind of bottom-up PLM. If you are missing capabilities, just build them yourselves, using REST-services, APIs, using Low-Code platforms. It seems attractive for the smaller enterprises, however most of the time, only a short time. I fully concur with Marc’s identified risks here.

As I often illustrated in presentations related to a digital future, you will need a mix of both. Based on your point of focus, you could imagine five major platforms being connected together to cover all aspects of a business. Depending on your company’s business model and products, one of them might be the dominant one. With my PLM-focus, this would be the Product Innovation Platform, where the business is created.

Marc ended with five priorities to enable a long-term Digital Thread success.

  • First of all – set the ground rules for data governance. A topic often mentioned but is your company actively engaging on that already?
  • Next, learn from Model-Based Systems Engineering as a foundation for a Model-Based Enterprise.  A topic often discussed during the previous CIMdata Roadmap / PDT-conference.
  • The change from storing and hiding information in siloes towards an infrastructure and mindset of search and access of data, in particular, the access to Bill of Materials

The last point induced two more points.

  • The need for an open architecture and standards. We would learn more on this topic on day 3 of the conference.
  • Make sure your digital transformation sticks within the organization by investing and executing on organizational change management.

Conclusion

The words “Digital Thread” and “Digital Twin” are mentioned 18 times in this post and during the conference even more. However, at this conference, they were not hollow marketing terms. They are part of a dictionary for the future, as we will see in next week’s post when discussing some of the remaining presentations.

Closing this time with a point we all agreed upon: “A Digital Twin without a Digital Thread is an orphan”. Next week more!

About a year ago we started the PLM Global Green Alliance, further abbreviated as the PGGA. Rich McFall, the main driver behind the PGGA started the website, The PLM Green Alliance, to have a persistent place to share information.

Also, we launched the PLM Global Alliance LinkedIn group to share our intentions and create a community of people who would like to share knowledge through information or discussion.

Our mission statement is:

The mission of the new PLM Green Alliance is to create global connection, communication, and community between professionals who use, develop, market, or support Product Lifecycle Management (PLM) related technologies and software solutions that have value in addressing the causes and consequences of climate change due to human-generated greenhouse gas emissions. We are motivated by the technological challenge to help create a more sustainable and green future for our economies, industries, communities, and all life forms on our planet that depend on healthy ecosystems.

My motivation

My personal motivation to support and join the PGGA was driven by the wish to combine my PLM-world with interest to create a more sustainable society for anyone around the world. It is a challenging combination. For example, PLM is born in the Aerospace and Defense industries, probably not the most sustainable industries.

Having worked with some companies in the Apparel and Retail industry, I have seen that these industries care more about their carbon footprint. Perhaps because they are “volume-industries” closely connected to their consumers, these industries actively build practices to reduce their carbon footprint and impact societies. The sense or non-sense of recycling is such a topic to discuss and analyze.

At that time, I got inspired by a session during the PLM Roadmap / PDT 2019 conference.

Graham Aid‘s from the Ragn-Sells group was a call to action. Sustainability and a wealthy economy go together; however, we have to change our habits & think patterns.  You can read my review from this session in this blog post: The weekend after PLM Roadmap / PDT 2019 – Day 1

Many readers of this post have probably never heard of the Ragn-Sells group or followed up on a call for action.  I have the same challenge. Being motivated beyond your day-to-day business (the old ways of working) and giving these activities priority above exploring and learning more about applying sustainability in my PLM practices.

And then came COVID-19.

I think most of you have seen the image on the left, which started as a joke. However, looking back, we all have seen that COVID-19 has led to a tremendous push for using digital technologies to modernize existing businesses.

Personally, I was used to traveling every 2 – 3 weeks to a customer, now I have left my home office only twice for business. Meanwhile, I invested in better communication equipment and a place to work. And hé, it remains possible to work and communicate with people.

Onboarding new people, getting to know new people takes more social interaction than a camera can bring.

In the PGGA LinkedIn community, we had people joining from all over the world. We started to organize video meetings to discuss their expectations and interest in this group with some active members.

We learned several things from these calls.

First of all, finding a single timeslot that everyone worldwide could participate in is a challenge. A late Friday afternoon is almost midnight in Asia and morning in the US. And is Friday the best day – we do not know yet.

Secondly, we realized that posts published in our LinkedIn group did not appear in everyone’s LinkedIn feed due to LinkedIn’s algorithms. For professionals, LinkedIn becomes less and less attractive as the algorithms seem to prefer frequency/spam above content.

For that reason, we are probably moving to the PLM Green Alliance website and combine this environment with a space for discussion outside the LinkedIn scope. More to come on the PGGA website.

Finally, we will organize video discussion sessions to ask the participants to prepare themselves for a discussion. Any member of the PGGA can bring in the discussion topics.

It might be a topic you want to clarify or better understand.

What’s next

For December 4th, we have planned a discussion meeting related to the Exponential Roadmap 2019 report, where  36  solutions to halve carbon emission by 2030 are discussed. In our video discussion, we want to focus on the chapter: Digital Industries.

We believe that this topic comes closest to our PLM domain and hopes that participants will share their thinking and potential activities within their companies.

You can download the Exponential Roadmap here or by clicking on the image. More details about the PLM Global Green Alliance you will find in the LinkedIn group. If you want to participate, let us know.

The PGGA website will be the place where more and more information will be collected per theme, to help you understand what is happening worldwide and the place where you can contribute to let us know what is happening at your side.

Conclusion

The PLM Global Green Alliance exists now for a year with 192 members. With approximately five percent active members, we have the motivation to grow our efforts and value. We learned from COVID-19 there is a need to become proactive as the costs of prevention are always lower than the costs of (trying) fixing afterward.

And each of us has the challenge to behave a little differently than before.

Will you be one of them ?

In the last two weeks, three events were leading to this post.

First, I read John Stark’s recent book Products2019. A must-read for anyone who wants to understand the full reach of product lifecycle related activities. See my recent post: Products2019, a must-read if you are new to PLM

Afterwards, I talked with John, discussing the lack of knowledge and teaching of PLM, not to be confused by PLM capabilities and features.

Second, I participated in an exciting PI DX USA 2020 event. Some of the sessions and most of the roundtables provided insights to me and, hopefully, many other participants. You can get an impression in the post: The Weekend after PI DX 2020 USA.

A small disappointment in that event was the closing session with six vendors, as I wrote. I know it is evident when you put a group of vendors in the arena, it will be about scoring points instead of finding alignment. Still, having criticism does not mean blaming, and I am always open to having a dialogue. For that reason, I am grateful for their sponsorship and contribution.

Oleg Shilovitsky mentioned cleverly that this statement is a contradiction.

“How can you accuse PLM vendors of having a limited view on PLM and thanking them for their contribution?”

I hope the above explanation says it all, combined with the fact that I grew up in a Dutch culture of not hiding friction, meanwhile being respectful to others.

We cannot simplify PLM by just a better tool or technology or by 3D for everybody. There are so many more people and processes related to product lifecycle management involved in this domain if you want a real conference, however many of them will not sponsor events.

It is well illustrated in John Stark’s book. Many disciplines are involved in the product lifecycle. Therefore, if you only focus on what you can do with your tool, it will lead to an incomplete understanding.

If your tool is a hammer, you hope to see nails everywhere around you to demonstrate your value

The thirds event was a LinkedIn post from John Stark  – 16 groups needing Product Lifecycle Knowledge, which for me was a logical follow-up on the previous two events. I promised John to go through these 16 groups and provide my thoughts.

Please read his post first as I will not rewrite what has been said by John already.

CEOs and CTOs

John suggested that they should read his book, which might take more than eight hours.  CEOs and CTOs, most of the time, do not read this type of book with so many details, so probably mission impossible.

They want to keep up with the significant trends and need to think about future business (model).

New digital and technical capabilities allow companies to move from a linear, coordinated business towards a resilient, connected business. This requires exploring future business models and working methods by experimenting in real-life, not Proof of Concept. Creating a learning culture and allowing experiments to fail is crucial, as you only learn by failing.

CDO, CIOs and Digital Transformation Executives

They are the crucial people to help the business to imagine what digital technologies can do. They should educate the board and the business teams about the power of having reliable, real-time data available for everyone connected. Instead of standardizing on systems and optimizing the siloes, they should assist and lead in new infrastructure for connected services, end-to-end flows delivered on connected platforms.

These concepts won’t be realized soon. However, doing nothing is a big risk, as the traditional business will decline in a competitive environment. Time to act.

Departmental Managers

These are the people that should worry about their job in the long term. Their current mission might be to optimize their department within its own Profit & Loss budget. The future is about optimizing the information flow for the whole value chain, including suppliers and customers.

I wrote about it in “The Middle Management Dilemma.” Departmental Managers should become more team leaders inspiring and supporting the team members instead of controlling the numbers.

Products Managers

This is a crucial role for the future, assuming a product manager is not only responsible for the marketing or development side of the product but also gets responsibility for understanding what happens with the product during production and sales performance. Understanding the full lifecycle performance and cost should be their mission, supported by a digital infrastructure.

Product Developers

They should read the book Products2019 to be aware there is so much related to their work. From this understanding, a product developer should ask the question:

“What can I do better to serve my internal and external customers ?”

This question will no arise in a hierarchical organization where people are controlled by managers that have a mission to optimize their silo. Product Developers should be trained and coached to operate in a broader context, which should be part of your company’s mission.  Too many people complain about usability in their authoring and data management systems without having a holistic understanding of why you need change processes and configuration management.

Product Lifecycle Management (PLM) deployers

Here I have a little bit of the challenge that this might be read as PLM-system users. However, it should be clear that we mean here people using product data at any moment along the product lifecycle, not necessarily in a single system.

This is again related to your company’s management culture. In the ideal world, people work with a purpose and get informed on how their contribution fits the company’s strategy and execution.

Unfortunately, in most hierarchical organizations, the strategy and total overview get lost, and people become measured resources.

New Hires and others

John continues with five other groups within the organization. I will not comment on them, as the answers are similar to the ones above – it is about organization and culture.

Educators and Students

This topic is very close to my heart, and one of the reasons I continue blogging about PLM practices. There is not enough attention to product development methodology or processes. Engineers can get many years of education in specific domains, like product design principles, available tools and technologies, performing physical and logical simulations.

Not so much time is spent on educating current best practices, business models for product lifecycle management.

Check in your country how many vendor-independent methodology-oriented training you can find. Perhaps the only consistent organization I know is CIMdata, where the challenge is that they deliver training to companies after students have graduated. It would be great if education institutes would embed serious time for product lifecycle management topics in their curriculum. The challenge, of course, the time and budget needed to create materials and, coming next, prioritizing this topic on the overall agenda.

I am happy to participate to a Specialized Master education program aiming at the Products and Buildings Digital Engineering Manager (INGENUM). This program organized by Arts Et Metiers in France helps create the overview for understanding PLM and BIM – in the French language as before COVID-19 this was an on-site training course in Paris.

Hopefully, there are more institutes offering PLM eductation – feel free to add them in the comments of this post.

Consultants, Integrators and Software Company Employees

Of course, it would be nice if everyone in these groups understands the total flow and processes within an organization and how they relate to each other. Too often, I have seen experts in a specific domain, for example, a 3D CAD-system having no clue about revisioning, the relation of CAD to the BOM, or the fundamentals of configuration management.

Consultants, Integrators and Software Company Employees have their own challenges as their business model is often looking for specialized skills they can sell to their clients, where a broader and general knowledge will come from experience on-the-job.

And if you are three years working full-time on a single project or perhaps work in three projects, your broader knowledge does not grow fast. You might become the hammer that sees nails everywhere.

For that reason, I recommend everyone in my ecosystem to invest your personal time to read related topics of interest. Read LinkedIn-posts from others and learn to differentiate between marketing messages and people willing to share experiences. Don’t waste your time on the marketing messages and react and participate in the other discussions. A “Like” is not enough. Ask questions or add your insights.

In the context of my personal learning, I mentioned that I participated in the DigitalTwin-conference in the Netherlands this week. Unfortunately, due to the partial lockdown, mainly a virtual event.

I got several new insights that I will share with you soon. An event that illustrated Digital Twin as a buzzword might be hype, however several of the participants illustrated examples of where they applied or plan to apply Digital Twin concepts. A great touch with reality.

Another upcoming conference that will start next week in the PLM Roadmap 2020 – PDT conference. The theme: Digital Thread—the PLM Professionals’ Path to Delivering Innovation, Efficiency, and Quality is not a marketing theme as you can learn from the agenda. Step by step we are learning here from each other.

 

Conclusion

John Stark started with the question of who should need Product Lifecycle Knowledge. In general, Knowledge is power, and it does not come for free. Either by consultancy, reading or training. Related to Product Lifecycle Management, everyone must understand the bigger picture. For executives as they will need to steer the company in the right direction. For everyone else to streamline the company and enjoy working in a profitable environment where you contribute and can even inspire others.

An organization is like a human body; you cannot have individual cells or organs that optimize themselves only – we have a name for that disease. Want to learn more? Read this poem: Who should be the boss?

 

 

It was a pleasure to participate this last week in the PI DX USA conference for several reasons. First, because Marketkey has been able to organize the event in the same manner as before. Meaning presentations, networking meetings, and roundtable discussions. Virtual, of course, however, in the same spirit. Secondly, the 3-day event took place during a late afternoon for Europe lasted 4 – 5 hours per day, allowing a larger audience to learn from each other. Before we had the European viewpoints and American viewpoints separate, now we had the chance to discuss and listen together.  A single version of the truth!

A few highlights of the sessions that I attended. There was enough to choose from if you look at the agenda from these three days.

Creating a Digital Enterprise: What are the Challenges and Where to Start?

The conference started with a panel discussion lead by David Sherburne. The three panelists came from entirely different industries Jaswinder Walia, CIO Engineering, GE Aviation, Erik Olson, VP Product Innovation and Development, Crocs and Samuli Savo, SVP Product Management & Innovation, Stora Enso. It was interesting to see the commonalities and differences between these companies, all working towards a digital enterprise.

David’s last question was about getting advice from these gentlemen.

What mistakes to avoid and what to share?

Jaswinder: The mistake of doing too much analysis paralyzed the organization. Sometimes you need to move ahead and adapt during the journey – do not wait. Sometimes there is too much focus on the quality of a business solution and not enough attention to the flow of information

Eric: COVID-19 was THE success. It pushed people to work with digital tools. They had immediately proof points delivering a deal within 6 weeks.

Samuli: The success is in funding ideas. Samuli had a more extended session on this topic during the event. Do not invest in long time projects – visible success is needed in a few months, not in 1 year.

Probably I liked these three pieces of advice so much as it is the same as what I am advising companies. Moving from a traditional PLM-approach towards a more model-based approach. Instead of waiting and looking till others master this topic, start learning (small) and make sure you make progress. Learning is crucial for a digital transformation in the PLM-domain.

What is Stopping Manufacturers from Implementing Industry 4.0

This roundtable session was structured by Gavin Hill and Jonathan Bray, both from the AMRC (Advanced Manufacturing Research Centre), who gave several insights and examples from what AMRC has been doing as research in the context of Industry 4.0.

A roundtable is supposed to be an interactive session, which would have been a challenge as I noticed 49 people subscribed to this session.  However, during the session, it became clear there was a significant silent majority.

Gavin and Jonathan had a lot to share. When the time came to interact with the audience, it was mostly other vendors talking about their Industry 4.0 vision or capabilities.
Vendors are perhaps more than ten years ahead with their vision as CIMdata’s image on the left states. When you would implement all these beautiful concepts, you will discover many frustrating gaps as your existing company’s processes, people, and skills are not that easy to change.

Smart Manufacturing: Simulating Workflows to Drive Efficiency and Productivity

A company that has been active in Smart Manufacturing is AGCO, who has been presenting several times their future strategy and lessons learned at PI.

See Susan Lauda’s presentation in The weekend after PLMx Hamburg 2018

In this session, Andreas Frank and Dominik Hammerl shared how AGCO utilizes line balancing simulation to identify bottlenecks and create a productive, efficient workflow as one of the projects within their Smart Factory strategy.

Their current solution was introducing a new that that had fast user adoption. The big elephant in the room remains to connect all these tools, having a flow of consistent data between all enterprise systems.

No problem at this time, as I heard in most of the sessions that I attended – stop analyzing and solving all the details upfront – start doing and learning – keeping the ultimate vision in mind/

Transforming to a Software-Centric Business Model: How the Need for Data is Changing Business

This was an exciting session to see digital transformation in action. Subramanian Kunchithapatham, VP Engineering of Sensormatic Solutions (Johnson Controls) who are focusing on the brick and mortar retail shops.

These shops have been evolving as online shopping. The shift of focus towards customer experience in the shop requires these businesses to adapt. By using a digital twin concept for shop behavior and operations, they can now sell software solutions that improve their customer’s performance, as you can see from the image below.

To What Degree Do We Need To Integrate PLM, ERP and MES?

This roundtable session, excellently moderated by Jan Johansson, Senior Director Digital Transformation at Terma A/S, was the type of roundtable you would like to participate in. I think the theme is actual for all of us

Statements varied from”ERP is our only system of truth as here we manage our financial execution” till”We should include CRM, CPQ and all other TLAs inside an enterprise – the connected enterprise”

My observation was that many of us are still thinking in systems, an ERP-system, a PLM-system. We talk about”owning data” instead of”being accountable” for data in that context.

Another observation was to check who is responsible for PLM in your company. If it is engineering, probably your PLM-system is considered an engineering tool, not an infrastructure that enables product data to be available along the product lifecycle.

How to deal with legacy data, a challenge in the aerospace industry. Store data in neutral formats or select a preferred vendor-related format and stick to it.

A great roundtable that hopefully inspired the participants to explore some of the options discussed or connect and learn more from each other experiences.

Overcoming Data Management Challenges with AI

Nicely complementary to the previous roundtable was the session moderated by Mo (Muhannad)Alomari’s, AI Hub Lead at Rolls Royce plc. As an introduction, Mo dazzled us with the amount of data/knowledge related to gas turbines. Impossible to comprehend or access by human beings without the support of Artificial Intelligence.

Mo also brought the knowledge graph to our attention through this movie from the Google Knowledge Graph. We discussed this concept and its applicability for the PLM-domain. For sure, technology can bring high value for discovering information. However, there will still be a human-based interpretation required to filter out incorrect or unwanted associations. I think we all observe the challenges introduced by the”knowledge” algorithms on social media. Instead of building your knowledge, they try to drag you into even more absurd “facts.”

Mo also shared how, through AI, they are setting up data conversion practices. As you can imagine, a lot of Rolls Royce legacy data came from the era of paper/scanned drawings. Which text is meaningful on a drawing. Is the text a remark or an official annotation?  AI-based best practices are not yet affordable for mainstream companies.

I believe we are all looking forward to learning from the best and bad practices of these frontrunners.  As the group was small, it was an interesting discussion and learning session that you only can have by participating actively.

Embracing Digital in Face of Pandemic Disruption

I want to close my highlights by pointing to the final panel discussion. Where the theme was to”hear from experts who have been guiding customers through digital transformation projects before COVID-19 and supporting their clients throughout the crisis,” you would expect an expert discussion.

Indeed, the first part illustrated the trend that COVID-19 accelerated the focus on an inclusive and flexible supply chain. Perhaps traditional PLM-systems have a massive engineering focus, now most panelists report a shifted focus to the supply chain. The point of gravity has shifted.

The discussion started to shift, where the newcomers in PLM started to claim that they do not have an upgrade issue thanks to their cloud offering. An when Paul Powers started to pitch that upgrades should be as easy as smartphone upgrades and BOM-updates do not need people anymore because we have machine learning, it reminded me of my 2015 PDT presentation.

In The Perfect Storm or a Fatal Tsunami session (here on Slideshare) , I predicted that AI and machine learning would remove many traditional PLM-related processes in the long-term. However, the future solutions must be rigid, not just a demo.

The discussion drifted toward “openness” and “PLM is dying out.” Again, here you could see the vendors’ fixation to talk about a single tool, not about a business strategy.

A statement like “PLM sucks” does not help the strategy. It shows these vendors cannot understand the PLM domain and prefer to create their own terminology, cornering PLM in the mechanical domain to be different. I will not go into the PLM sucks discussion as I mentioned this acronym at the PI 2016 event in Munich (slideshare).

However, we should be grateful that these companies sponsored this event. They imagine the (their) ideal future and thanks to their contribution, we were able to be in this event with fruitful discussions. Therefore my thanks to all the sponsors making this event happen.The challenge is always to imagine the future and next have a realistic path to get there on-time.

Conclusion

It was exciting to participate in this PI DX event. The Marketkey-team has transposed the conference concept to a virtual event, very close to the physical event. In particular, well-moderated roundtable sessions based on Teams are the big differentiator for me compared to other virtual events I have seen.

Expecting COVID-19 will not disappear next week, I look forward to the next event with such an interaction.

This time it is again about learning. Last week, I read John Stark’s book: Products2019: A project to map and blueprint the flow and management of products across the product lifecycle: Ideation; Definition; Realisation; Support of Use; Retirement and Recycling. John, a well-known PLM consultant and writer of academic books related to PLM, wrote this book during his lockdown due to the COVID-19 virus. The challenge with PLM (books) is that it is, in a way boring from the outside. Remember my post: How come PLM and CM are boring? (reprise) ?

This time John wrapped the “boring” part into a story related to Jane from Somerset, who, as part of her MBA studies, is performing a research project for Josef Mayer Maschinenfabrik. The project is to describe for the newly appointed CEO what happens with the company’s products all along the lifecycle.

A story with a cliffhanger:

What happened to Newt from Cleveland?

 

Seven years in seven weeks

Poor Jane, in seven weeks, she is interviewing people on three sites. Two sites in Germany and one in France, and she is doing over a hundred interviews on her own. I realized that thanks to relation to SmarTeam at that time, it took me probably seven years to get in front of all these stakeholders in a company.

I had much more fun most of the time as you can see below. My engagements were teamwork, where you had some additional social relief after work. Jane works even at the weekends.

However, there are also many similarities. Her daily rhythm during working days. Gasthaus Adler reflects many of the typical guesthouses that I have visited. People staying there with a laptop were signs of the new world. Like Jane, I enjoyed the weissbier and noticed that sometimes overhearing other guests is not good for their company’s reputation. A lot of personal and human experiences are wrapped into the storyline.

Spoiler: Tarzan meets Jane!

Cultural differences

The book also illustrates the cultural difference between countries (Germany/France/US) nicely and even between regions (North & South). Just check the breakfast at your location to see it.

Although most of the people interviewed by Jane contributed to her research, she also meets that either for personal or political reasons, do not cooperate.

Having worked worldwide, including in Asian countries, I learned that understanding people and culture is crucial for successful PLM engagements.

John did an excellent job of merging cultural and human behavior in the book. I am sure we share many similar experiences, as both this book and my blog posts, do not mention particular tools. It is about the people and the processes.

Topics to learn

You will learn that 3D CAD is not the most important topic, as perhaps many traditional vendor-related PDM consultants might think.

Portfolio Management is a topic well addressed. In my opinion, to be addressed in every PLM roadmap, as here, the business goals get connected to the products.

New Product Introduction, a stage-gate governance process, and the importance of Modularity are also topics that pop up in several cases.

The need for innovation, Industry 4.0 and AI (Artificial Intelligene) buzz, the world of software development and the “War for Talent” can all be found in the book.

And I was happy that even product Master Data Management was addressed. In my opinion, not enough companies realize that a data-driven future requires data quality and data governance. I wrote about this topic last year: PLM and PIM – the complementary value in a digital enterprise.

There are fantastic technology terms, like APIs, microservices, Low Code platforms. They all rely on reliable and sharable data.

What’s next

Products2019 is written as the starting point for a sequel. In this book, you quickly learn all the aspects of a linear product lifecycle, as the image below shows

I see an opportunity for Products2020 (or later). What is the roadmap for a company in the future?

How to deal with more data-driven, more agile in their go-to-market strategy, as software, will be more and more defining the product’s capabilities?

How to come from a linear siloed approach towards a horizontal flow of information, market-driven and agile?

Perhaps we will learn what happened with Newt from Cleveland?

Meanwhile, we have to keep on learning to build the future.

My learning continues this week with PI DX USA 2020. Usually, a conference I would not attend as traveling to the USA would have too much impact on my budget and time. Now I can hopefully learn and get inspired – you can do the same! Feel free to apply for a free registration if you are a qualified end-user – check here.

And there is more to learn, already mentioned in my previous post:

Conclusion

John Stark wrote a great book to understand what is currently in most people’s heads in mid-size manufacturing companies. If you are relatively new to PLM, or if you have only been active in PDM, read it  –  it is affordable!  With my series Learning from the past, I also shared twenty years of experience, more a quick walkthrough, and a more specialized view on some of the aspects of PLM. Keep on learning!

After the series about “Learning from the past,” it is time to start looking towards the future.  I learned from several discussions that I am probably working most of the time with advanced companies. I believe this would motivate companies that lag behind even to look into the future even more.

If you look into the future for your company, you need new or better business outcomes. That should be the driver for your company. A company does not need PLM or a Digital Twin. A company might want to reduce its time to market, improve collaboration between all stakeholders. These objectives can be realized by different ways of working and an IT-infrastructure to allow these processes to become digital and connected.

That is the “game”. Coming back to the future of PLM.  We do not need a discussion about definitions; I leave this to the academics and vendors. We will see the same applies to the concept of a Digital Twin.

My statement: The digital twin is not new. Everybody can have their own digital twin as long as you interpret the definition differently. Does this sound like the PLM definition?

The definition

I like to follow the Gartner definition:

A digital twin is a digital representation of a real-world entity or system. The implementation of a digital twin is an encapsulated software object or model that mirrors a unique physical object, process, organization, person, or other abstraction. Data from multiple digital twins can be aggregated for a composite view across a number of real-world entities, such as a power plant or a city, and their related processes.

As you see, not a narrow definition. Now we will look at the different types of interpretations.

Single-purpose siloed Digital Twins

  1. Simple – data only

One of the most straightforward applications of a digital twin is, for example, my Garmin Connect environment. When cycling, my device registers performance parameters (speed, cadence, power, heartbeat, location). After every trip, I can analyze my performance. I can see changes in my overall performance; compare my performance with others in my category (weight, age, sex).

Based on that, I can decide if I want to improve my performance. My personal business goal is to maintain and improve my overall performance, knowing I cannot stop aging by upgrading my body.

On November 4th, 2020, I am participating in the (almost virtual) Digital Twin conference organized by Bits&Chips in the Netherlands. In the context of human performance, I look forward to Natal van Riel’s presentation: Towards the metabolic digital twin – for sure, this direction is not simple. Natal is a full professor at the Technical University in Eindhoven, the “smart city” in the Netherlands

  1. Medium – data and operating models

Many connected devices in the world use the same principle. An airplane engine, an industrial robot, a wind turbine, a medical device, and a train carriage; all track the performance based on this connection between physical and virtual, based on some sort of digital connectivity.

The business case here is also monitoring performance, predict maintenance, and upgrade the product when needed.

This is the domain of Asset Lifecycle Management, a practice that exists for decades. Based on financial and performance models, the optimal balance between maintaining and overhaul has to be found. Repairs are disruptive and can be extremely costly. A manufacturing site that cannot produce can costs millions per day. Connecting data between the physical and the virtual model allows us to have real-time insights and be proactive. It becomes a digital twin.

  1. Advanced – data and connected 3D model

The ditial twin we see the most in marketing videos is a virtual twin, using a 3D-representation for understanding and navigation.  The 3D-representation provides a Virtual Reality (VR) environment with connected data. When pointing at the virtual components, information might appear, or some animation takes place.

Building such a virtual representation is a significant effort; therefore, there needs to be a serious business case.

The simplest business case is to use the virtual twin for training purposes. A flight simulator provides a virtual environment and behavior as-if you are flying in the physical airplane – the behavior model behind the simulator should match as good as possible the real behavior. However, as it is a model, it will never be 100 % reality and requires updates when new findings or product changes appear.

A virtual model of a platform or plant can be used for training on Standard Operating Procedures (SOPs). In the physical world, there is no place or time to conduct such training. Here the complexity might be lower. There is a 3D Model; however, serious updates can only be expected after a major maintenance or overhaul activity.

These practices are not new either and are used in places where the physical training cannot be done.

More challenging is the Augmented Reality (AR) use case. Here the virtual model, most of the time, a lightweight 3D Model, connects to real-time data coming from other sources. For example, AR can be used when an engineer has to service a machine. The AR-environment might project actual data from the machine, indicate service points and service procedures.

The positive side of the business case is clear for such an opportunity, ensuring service engineers always work with the right information in a real-time context. The main obstacle for implementing AR, in reality, is the access to data, the presentation of the data and keeping the data in the AR-environment matching the reality.

And although there are 3D Models in use, they are, to my knowledge, always created in siloes, not yet connected to their design sources.Have a look at the Digital Twin conference from Bits&Chips, as mentioned before.

Several of the cases mentioned above will be discussed here. The conference’s target is to share real cases concluded by Q & A sessions, crucial for a virtual event.

Connected Virtual Twins along the product lifecycle

So far, we have been discussing the virtual twin concept, where we connect a product/system/person in the physical world to a virtual model. Now let us zoom in on the virtual twins relevant for the early parts of the product lifecycle, the manufacturing twin, and the development twin. This image from Siemens illustrates the concept:

On slides they imagine a complete integrated framework, which is the future vision. Let us first zoom in on the individual connected twins.

The digital production twin

This is the area of virtual manufacturing and creating a virtual model of the manufacturing plant. Virtual manufacturing planning is not a new topic. DELMIA (Dassault Systèmes) and Tecnomatix (Siemens) are already for a long time offering virtual manufacturing planning solutions.

At that time, the business case was based on the fact that the definition of a manufacturing plant and process done virtually allows you to optimize the plant before investing in physical assets.

Saving money as there is no costly prototype phase to optimize production. In a virtual world, you can perform many trade-off studies without extra costs. That was the past (and for many companies still the current situation).

With the need to be more flexible in manufacturing to address individual customer orders without increasing the overhead of delivering these customer-specific solutions, there is a need for a configurable plant that can produce these individual products (batch size 1).

This is where the virtual plant model comes into the picture again. Instead of having a virtual model to define the ultimate physical plant, now the virtual model remains an active model to propose and configure the production process for each of these individual products in the physical plant.

This is partly what Industry 4.0 is about. Using a model-based approach to configure the plant and its assets in a connected manner. The digital production twin drives the execution of the physical plant. The factory has to change from a static factory to a dynamic “smart” factory.

In the domain of Industry 4.0, companies are reporting progress. However, to my experience, the main challenge is still that the product source data is not yet built in a model-based, configurable manner. Therefore, requiring manual rework. This is the area of Model-Based Definition, and I have been writing about this aspect several times. Latest post: Model-Based: Connecting Engineering and Manufacturing

The business case for this type of digital twin, of course, is to be able to customer-specific products with extremely competitive speed and reduced cost compared to standard. It could be your company’s survival strategy. As it is hard to predict the future, as we see from COVID-19, it is still crucial to anticipate the future, instead of waiting.

The digital development twin

Before a product gets manufactured, there is a product development process. In the past, this was pure mechanical with some electronic components. Nowadays, many companies are actually manufacturing systems as the software controlling the product plays a significant role. In this context, the model-based systems engineering approach is the upcoming approach to defining and testing a system virtually before committing to the physical world.

Model-Based Systems Engineering can define a single complex product and perform all kinds of analysis on the system even before there is a physical system in place.  I will explain more about model-based systems engineering in future posts. In this context, I want to stress that having a model-based system engineering environment combined with modularity (do not confuse it with model-based) is a solid foundation for dealing with unique custom products. Solutions can be configured and validated against their requirements already during the engineering phase.

The business case for the digital development twin is easy to make. Shorter time to market, improved and validated quality, and reduced engineering hours and costs compared to traditional ways of working. To achieve these results,  for sure, you need to change your ways of working and the tools you are using. So it won’t be that easy!

For those interested in Industry 4.0 and the Model-Based System Engineering approach, join me at the upcoming PLM Road Map 2020 and PDT 2020 conference on 17-18-19 November. As you can see from the agenda, a lot of attention to the Digital Twin and Model-Based approaches.

Three digital half-days with hopefully a lot to learn and stay with our feet on the ground.  In particular, I am looking forward to Marc Halpern’s keynote speech: Digital Thread: Be Careful What you Wish For, It Just Might Come True

Conclusion

It has been very noisy on the internet related to product features and technologies, probably due to COVIC-19 and therefore disrupted interactions between all of us – vendors, implementers and companies trying to adjust their future. The Digital Twin concept is an excellent framing for a concept that everyone can relate to. Choose your business case and then look for the best matching twin.

On March 22 this year, I wrote Time to Think (and act differently) in de middle of a changing world. We were entering a lockdown in the Netherlands due to the COVID-19 virus. As it was such a disruptive change, it was an opportunity to adapt their current ways of working.

The reason for that post was my experience when discussing PLM-initiatives with companies. Often they have no time to sit down, discuss and plan their PLM targets as needed. Crucial people are too busy, leading to an implementation of a system that, in the best case, creates (some) benefits.

The well-known cartoon says it all. We are often too busy doing business as usual, making us feel comfortable. Only when it is too late, people are forced to act.  As the second COVID-19 wave seems to start in the Netherlands, I want to look back on what has happened so far in my eco-system.

Virtual Conferences

As people could not travel anymore, traditional PLM-conferences could not be organized anymore. What was going to be the new future for conferences? TECHNIA, apparently clairvoyant, organized their virtual PLM Innovation Forum as one of the first, end of April.

A more sustainable type of PLM-conference was already a part of their plans, given the carbon footprint a traditional conference induces.  The virtual conference showed that being prepared for a virtual conference pays off during a pandemic with over 1000 participants.

Being first does not always mean being the best,  as we have to learn. While preparing my session for the conference, I felt the same excitement as for a traditional conference. You can read about my initial experience here: The weekend after the PLM Innovation Forum.

Some weeks later, having attended some other virtual conferences, I realized that some points should be addressed/solved:

  • Video conferencing is a must – without seeing people talking, it becomes a podcast.
  • Do not plan long conference days. It is hard to sit behind a screen for a full day. A condensed program makes it easier to attend.
  • Virtual conferences mean that they can be attended live from almost all around the globe. Therefore, finding the right timeslots is crucial for the audience – combined with the previous point – shorter programs.
  • Playing prerecorded sessions without a Q&A session should be avoided. It does not add value.
  • A conference is about networking and discussion – I have not seen a solution for this yet. Fifty percent of the conference value for me comes from face-to-face discussions and coffee meetings. A virtual conference needs to have private chat opportunities between attendees.

In the last quarter of this year, I will present at several merely local conferences, sometimes a mix between “live” with a limited number of attendees, if it will be allowed.

And then there is the upcoming PLM Road Map & PDT Fall 2020 (virtual) conference on 17-18-19 November.

This conference has always been my favorite conference thanks to its continued focus on sharing experiences, most of the time, based on industry standards. We discuss topics and learn from each other. See my previous posts: The weekend after 2019 Day 1, 2019 Day 2, 2018 Day 1, 2018 Day2, 2017 Day 1, 2017 Day 2, etc.

The theme Digital Thread—the PLM Professionals’ Path to Delivering Innovation, Efficiency, and Quality has nothing to do with marketing. You can have a look at the full schedule here. Although there is a lot of buzz around Digital Thread, presenters discuss the reality and their plans

Later in this post, see the paragraph Digital Thread is not a BOM, I will elaborate on this theme.

Getting tired?

I discovered I am getting tired as I am missing face-to-face interaction with people. Working from home, having video calls, is probably a very sustainable way of working.  However, non-planned social interaction, meeting each other at the coffee machine, or during the breaks at a conference or workshop, is also crucial for informal interaction.

Apparently, several others in my eco-system are struggling too. I noticed a tsunami of webinars and blog posts where many of them were an attempt to be noticed. Probably the same reason: traditionally businesses have stalled. And it is all about Digital Transformation and SaaS at this moment. Meaningless if there is no interaction.

In this context, I liked Jan Bosch’s statement in his article: Does data-driven decision-making make you boring? An article not directly addressing the PLM-market; however, there is a lot of overlap related to people’s reluctance to imagine a different future.

My favorite quote:

 I still meet people that continue to express beliefs about the world, their industry, their customers or their own performance that simply aren’t true. Although some, like Steve Jobs, were known for their “reality distortion field,” for virtually all of us, just wishing for something to be true doesn’t make it so. As William Edwards Deming famously said: in God we trust; all others must bring data.

I fully concur with this statement and always get suspicious when someone claims the truth.

Still, there are some diamonds.

I enjoyed all episodes from Minerva PLM TV – Jennifer Moore started these series in the early COVID19-days (coincidence?). She was able to have a collection of interviews with known and less-known people in the PLM-domain. As most of them were vendor-independent, these episodes are a great resource to get educated.

The last episode with Angela Ippisch illustrates how often PLM in companies depends on a few enthusiastic persons, who have the energy to educate themselves. Angela mentions there is a lot of information on the internet; the challenge is to separate the useful information from marketing.

I have been publishing the past five months a series of posts under the joint theme learning from the past to understand the future. In these posts, I explained the evolution from PDM to PLM, resulting in the current item-centric approach with an EBOM, MBOM, and SBOM.

On purpose, one post per every two weeks – to avoid information overflow. Looking back, it took more posts than expected, and they are an illustration of the many different angles there are in the PLM domain – not a single truth.

Digital Thread is not a BOM

I want to address this point because I realized that in the whole blogging world there appear to be two worlds when discussing PLM terminology. Oleg Shilovitsky, CEO@OpenBOM, claims that Digital Thread and Digital Twin topics are just fancy marketing terms. I was even more surprised to read his post: 3 Reasons Why You Should Avoid Using The Word “Model” In PLM. Read the comments and discussion in these posts (if LinkedIn allows you to navigate)

Oleg’s posts have for me most of the time, always something to discuss. I would be happier if other people with different backgrounds would participate in these discussions too – A “Like” is not a discussion. The risk in a virtual world is that it becomes a person-to-person debate, and we have seen the damage such debates can do for an entire community.

In the discussion we had related to Digital Thread and BOM, I realized that when we talk about traditional products, the BOM and the Digital Thread might be the same. This is how we historically released products to the market. Once produced, there were no more changes. In these situations, you could state a PLM-backbone based on BOM-structures/views, the EBOM, MBOM, and SBOM provide a Digital Thread.

The different interpretation comes when talking about products that contain software defining its behavior. Like a computer, the operating system can be updated on the fly; meanwhile, the mechanical system remains the same. To specify and certify the behavior of the computer, we cannot rely on the BOM anymore.

Having software in the BOM and revise the BOM every time there is a software change is a mission impossible. A mistake suggested ten years ago when we started to realize the different release cycles of hardware and software. Still, it is all about the traceability of all information related to a product along its whole lifecycle.

In a connected environment, we need to manage relationships between the BOM and relations to other artifacts. Managing these relations in a connected environment is what I would call the Digital Thread – a layer above PLM. While writing this post, I saw Matthias Ahrens’ post stating the same (click on the image to see the post)

When we discuss managing all the relations, we touch the domain of Configuration Management.  Martijn Dullaart/Martin Haket’s picture shares the same mindset – here, CM is the overlapping layer.

However, in their diagram, it is not a system picture; the different systems do not need to be connected. Configuration Management is the discipline that maintains the correct definition of every product – CM maintains the Thread. When it becomes connected, it is a Digital Thread.

As I have reached my 1500 words, I will not zoom in on the PLM and Model discussion – build your opinion yourself. We have to realize that the word Model always requires a context. Perhaps many of us coming from the traditional PDM/PLM world (managing CAD data) think about CAD models. As I studied physics before even touching CAD, I grew up with a different connotation

Lars Taxén’s comment in this discussion perhaps says it all (click on the image to read it). If you want to learn and discuss more about the Digital Thread and Models, register for the PLM Roadmap & PDT2020 event as many of the sessions are in this context (and not about 3D CAD).

Conclusion

I noticed I am getting tired of all the information streams crying for my attention and look forward to real social discussions, not broadcasted. Time to think differently requires such discussion, and feel free to contact me if you want to reflect on your thoughts. My next action will be a new series named Painting the future to stay motivated. (As we understand the past).

I believe we are almost at the end of learning from the past. We have seen how, from an initial serial CAD-driven approach with PDM, we evolved to PLM-managed structures, the EBOM and the MBOM. Or to illustrate this statement, look at the image below, where I use a Tech-Clarity image from Jim Brown.

The image on the right describes perfectly the complementary roles of PLM and ERP. The image on the left shows the typical PDM-approach. PDM feeding ERP in a linear process. The image on the right, I believe it is from 2004, shows the best practice before digital transformation. PLM is supporting product innovation in an iterative approach, pushing released information to ERP for execution.

As I think in images, I like the concept of a circle for PLM and an arrow for ERP. I am always using those two images in discussions with my customers when we want to understand if a particular activity should be in the PLM or ERP-domain.

Ten years ago, the PLM-domain was conceptually further extended by introducing support for products in operations and service. Similar to the EBOM (engineering) and the MBOM (manufacturing), the SBOM (service) was introduced to support product information for products in operation. In theory a full connected cicle.

Asset Lifecycle Management

At the same time, I was promoting PLM-practices for owners/operators to enhance Asset Lifecycle Management. My first post from June 2010 was called: PLM for Asset Lifecycle Management and Asset Development introduces this approach.

Conceptually the SBOM and Asset Lifecycle Management have a lot in common. There is a design product, in this case, an asset (plant, machine) running in the field, and we need to make sure operators have the latest information about the asset. And in case of asset changes, which can be a maintenance operation, a repair or complete overall, we need to be sure the changes are based on the correct information from the as-built environment. This requires full configuration management.

Asset changes can be based on extensive projects that need to be treated like new product development projects, with a staged approach that can take weeks, months, sometimes years. These activities are typical activities performed in PLM-systems, not in MRO-systems that are designed to manage the actual operation. Again here we see the complementary roles of PLM (iterative) and MRO (execution).

Since 2008, I have worked a lot in this environment, mainly in the nuclear and process industry. If you want to learn more about this aspect of PLM, I recommend looking at the PLMpartner website, where Bjørn Fidjeland, in cooperation with SharePLM, published a course on Plant Information Management. We worked together in several projects and Bjørn has done a great effort to describe the logical model to be used instead of a function-feature story.

Ten years ago, we were not calling this concept the “Digital Twin,” as the aim was to provide end-to-end support of asset information from engineering, procurement, and construction towards operation in a coordinated manner. The breaking point in the relation between the EPCs and Owner/Operators is the data-handover – how much of your IP can/do you expose and what is needed. Nowadays, we would call striving for end-to-end data continuity the Digital Thread.

Hot from the press in this context, CIMdata just published a commentary Managing the Digital Thread in Global Value Chains describing Eurostep’s ShareAspace capabilities and experiences in managing an end-to-end information flow (Digital Thread) in a heterogeneous environment based on exchange standards like ISO 10303-239 PLCS.  Their solution is based on what I consider a more modern approach for managing digital continuity compared to the traditional approach I described before. Compare the two images in this paragraph. The first image represents the old/current way with a disconnected handover, the second represents ShareAspace connected approach based on a real digital thread.

The Service BOM

As discussed with Asset Lifecycle Management, there is a disconnect between the engineering disciplines and operations in the field, looking from the point of view of an Asset owner/operator.

Now when we look from the perspective of a manufacturing company that produces assets to be serviced, we can identify a different dataflow and a new structure, the Service BOM (SBOM).

The SBOM provides information on how a product needs to be serviced. What are the parts that require service, and what are the service kits that are possible for that product? For that reason, service engineering should be done in parallel to product engineering. When designing a product, the engineer needs to identify which the wearing parts (always require service in time) and which parts might be serviceable.

There are different ways to look at the SBOM. Conceptually, the SBOM could be created in close relation with the EBOM. At the moment you define your product, you also should specify how the product will be services. See the image below

From this example, it is clear that part standardization and modularization have a considerable benefit for services downstream. What if you have only one serviceable part that applies to many products? The number of parts to have in stock will be strongly reduced instead of having many similar parts that only fit in a single product?

Depending on the type of product, the SBOM can be generic, serving many products in the field. In that case, the company has to deal with catalogs, to be defined in PLM. Or the SBOM can be aligned with the As-Built of a capital product in the field. In that case, the concepts of Asset Lifecycle Management apply. Click on the image to see a clear picture.

The SBOM on its own,  in such an environment, will have links to specific documents, service instructions, operating manuals.

If your PLM-system allows it, extending the EBOM and MBOM with an SBOM is not a complex effort. What is crucial to understand is that the SBOM has its own lifecycle, which can even last longer than the active product sold. So sometimes, manufacturing specifications, related to service parts need to be maintained too, creating a link between the SBOM and potential MBOM(s).

ECM = Enterprise Change Management

When I discussed ECM in my previous post in the context of Engineering Change Management, I got the feedback that nowadays, everyone talks about Enterprise Change Management. Engineering Change Management is old school.

In the past, and even in a 2014 benchmark, a customer had two change management systems. One in PLM and one in ERP, and companies were looking into connecting these two processes. Like the BOM-interaction between PLM and ERP, this is technology-wise, never a real problem.

The real problem in such situations was to come to a logical flow of events. Many times the company insisted that every change should start from the ERP-system as we like to standardize. This means that even an engineering change had to be registered first in the ERP-system

Luckily the reach of PLM has grown. PLM is no longer the engineering tool (IT-system thinking). PLM has become the information backbone for product information all along the product lifecycle. Having the MBOM and SBOM available through a PLM-infrastructure allows organizations to streamline their processes.

Aras – digital thread through connected structures

And in this modern environment, enterprise change management might take place mostly in a PLM-infrastructure. The PLM-infrastructure providing a digital thread, as the Aras picture above illustrates, provides the full traceability to support configuration management.

However, we still have to remember that configuration management and engineering change management, first of all, are based on methodology and processes. Next, the combination of tools to be used will vary.

I like to conclude this topic with a quote from Lee Perrin’s comment on my previous blog post

I would add that aerospace companies implemented CM, to avoid fatal consequences to their companies, but also to their flying customers.

PLM provides the framework within which to carry out Configuration Management. CM can indeed be carried out without PLM, as was done in the old paper-based days. As you have stated, PLM makes the whole CM process much more efficient. I think more transparent too.

Conclusion

After nine posts around the theme Learning from the past to understand the future, I walked through the history of CAD, PDM and PLM in a fast mode, pointing to practices and friction points. In the blogging space, it is hard to find this information as most blog posts are coming from software vendors explaining why their tool is needed. Hopefully, these series have helped many of you to understand a broader context. Now I want to focus on the future again in my upcoming blog posts.

Still, feel free to contact me and discuss methodology topics.

Picture by Christi Wijnen – a good friend and photographer in the Netherlands

In the previous seven posts, learning from the past to understand the future, we have seen the evolution from manual 2D drawing handling. Next, the emerge of ERP and CAD followed by data management systems (PDM/PLM) and methodology (EBOM/MBOM) to create an infrastructure for product data from concept towards manufacturing.

Before discussing the extension to the SBOM-concept, I first want to discuss Engineering Change Management and Configuration Management.

ECM and CM – are they the same?

Often when you talk with people in my PLM bubble, the terms Change Management and Configuration Management are mixed or not well understood.

When talking about Change Management, we should clearly distinguish between OCM (Organizational Change Management) and ECM (Engineering Change Management). In this post, I will focus on Engineering Change Management (ECM).

When talking about Configuration Management also here we find two interpretations of it.

The first one is a methodology describing technically how, in your PLM/CAD-environment, you can build the most efficient way connected data structures, representing all product variations. This technology varies per PLM/CAD-vendor, and therefore I will not discuss it here. The other interpretation of Configuration Management is described on Wiki as follows:

Configuration management (CM) is a systems engineering process for establishing and maintaining consistency of a product’s performance, functional, and physical attributes with its requirements, design, and operational information throughout its life.

This is also the area where I will focus on this time.

And as-if great minds think alike and are synchronized, I was happy to see Martijn Dullaart’s recent blog post, referring to a poll and follow-up article on CM.

Here Martijn precisely touches the topic I address in this post. I recommend you to read his post: Configuration Management done right = Product-Centric first and then follow with the rest of this article.

Engineering Change Management

Initially, engineering change management was a departmental activity performed by engineering to manage the changes in a product’s definition. Other stakeholders are often consulted when preparing a change, which can be minor (affecting, for example, only engineering) or major (affecting engineering and manufacturing).

The way engineering change management has been implemented varies a lot. Over time companies all around the world have defined their change methodology, and there is a lot of commonality between these approaches. However, terminology as revision, version, major change, minor change all might vary.

I described the generic approach for engineering change processes in my blog post: ECR / ECO for Dummies from 2010.

The fact that companies have defined their own engineering change processes is not an issue when it works and is done manually. The real challenge came with PDM/PLM-systems that need to provide support for engineering change management.

Do you leave the methodology 100 % open, or do you provide business logic?

I have seen implementations where an engineer with a right-click could release an assembly without any constraints. Related drawings might not exist, parts in the assembly are not released, and more. To obtain a reliable engineering change management process, the company had to customize the PLM-system to its desired behavior.

An exercise excellent for a system integrator as there was always a discussion with end-users that do not want to be restricted in case of an emergency  (“we will complete the definition later” / “too many clicks” / “do I have to approve 100 parts ?”). In many cases, the system integrator kept on customizing the system to adapt to all wishes. Often the engineering change methodology on paper was not complete or contained contradictions when trying to digitize the processes.

For that reason, the PLM-vendors that aim to provide Out-Of-The-Box solutions have been trying to predefine certain behaviors in their system. For example, you cannot release a part, when its specifications (drawings/documents) are not released. Or, you cannot update a released assembly without creating a new revision.

These rules speed-up the implementation; however, they require more OCM (Organizational Change Management) as probably naming and methodology has to change within the company. This is the continuous battle in PLM-implementations. In particular where the company has a strong legacy or lack of business understanding, when implementing PLM.

There is an excellent webcast in this context on Minerva PLM TV – How to Increase IT Project Success with Organizational Change Management.

Click on the image or link to watch this recording.

Configuration Management

When we talk about configuration management, we have to think about managing the consistency of product data along the whole product lifecycle, as we have seen from the Wiki-definition before.

Wiki – the configuration Activity Model

Configuration management existed long before we had IT-systems. Therefore, configuration management is more a collection of activities (see diagram above) to ensure the consistency of information is correct for any given product. Consistent during design, where requirements match product capabilities. Consistent with manufacturing, where the manufacturing process is based on the correct engineering specifications. And consistent with operations, meaning that we have the full definition of product in the field, the As-Built, in correct relation to its engineering and manufacturing definition.

Source: Configuration management in aerospace industry

This consistency is crucial for products where the cost of an error can have a massive impact on the manufacturer. The first industries that invested heavily in configuration management were the Aerospace and Defense industries. Configuration management is needed in these industries as the products are usually complex, and failure can have a fatal impact on the company. Combined with many regulatory constraints, managing the configuration of a product and the impact of changes is a discipline on its own.

Other industries have also introduced configuration management nowadays. The nuclear power industry and the pharmaceutical industry use configuration management as part of their regulatory compliance. The automotive industry requires configuration management partly for compliance, mainly driven by quality targets. An accident or a recall can be costly for a car manufacturer. Other manufacturing companies all have their own configuration management strategies, mainly depending on their own risk assessment. Configuration management is a pro-active discipline – it costs money – time, people and potential tools to implement it. In my experience, many of these companies try to do “some” configuration management, always hoping that a real disaster will not happen (or can happen). Proper configuration management allows you to perform reliable impact analysis for any change (image above)

What happens in the field?

When introducing PLM in mid-market companies, often, the dream was that with the new PLM-system configuration, management would be there too.

Management believes the tools will fix the issue.

Partly because configuration management deals with a structured approach on how to manage changes, there was always confusion with engineering change management. Modern PLM-systems all have an impact analysis capability. However, most of the time, this impact analysis only reaches the content that is in the PLM-system. Configuration Management goes further.

If you think that configuration management is crucial for your company, start educating yourselves first before implementing anything in a tool. There are several places where you can learn all about configuration management.

  • Probably the best-known organization is IpX (Institute for Process Excellence), teaching the CM2 methodology. Have a look here: CM2 certification and courses
  • Closely related to IpX, Martijn Dullaart shares his thoughts coming from the field as Lead Architect for Enterprise Configuration Management at ASML (one of the Dutch crown jewels) in his blog: MDUX
  • CMstat, a configuration and data management solution provider, provides educational posts from their perspective. Have a look at their posts, for example, PLM or PDM or CM
  • If you want to have a quick overview of Configuration Management in general, targeted for the mid-market, have a look at this (outdated) course: Training for Small and Medium Enterprises on CONFIGURATION MANAGEMENT. Good for self-study to get an understanding of the domain.

 

To summarize

In regulated industries, Configuration Management and PLM are a must to ensure compliance and quality. Configuration management and (engineering) change management are, first of all, required methodologies that guarantee the quality of your products. The more complex your products are, the higher the need for change and configuration management.

PLM-systems require embedded engineering change management – part of the PDM domain. Performing Engineering Change Management in a system is something many users do not like, as it feels like overhead. Too much administration or too many mouse clicks.

So far, there is no golden egg that performs engineering change management automatically. Perhaps in a data-driven environment, algorithms can speed-up change management processes. Still, there is a need for human decisions.

Similar to configuration management. If you have a PLM-system that connects all the data from concept, design, and manufacturing in a single environment, it does not mean you are performing configuration management. You need to have processes in place, and depending on your product and industry, the importance will vary.

Conclusion

In the first seven posts, we discussed the design and engineering practices, from CAD to EBOM, ending with the MBOM. Engineering Change Management and, in particular, Configuration Management are methodologies to ensure the consistency of data along the product lifecycle. These methodologies are connected and need to be fit for the future – more on this when we move to modern model-based approaches.

Closing note:

While finishing this blog post today I read Jan Bosch’s post: Why you should not align. Jan touches the same topic that I try to describe in my series Learning from the Past ….., as my intention is to make us aware that by holding on to practices from the past we are blocking our future. Highly recommended to read his post – a quote:

The problem is, of course, that every time you resist change, you get a bit behind. You accumulate some business, process and technical debt. You become a little less “fitting” to the environment in which you’re operating

%d bloggers like this: