You are currently browsing the category archive for the ‘Cloud’ category.

Meanwhile, two weeks of a partial lockdown have passed here in the Netherlands, and we have at least another 3 weeks to go according to the Dutch government. The good thing in our country, decisions, and measures are made based on the advice of experts as we cannot rely on politicians as experts.

I realize that despite the discomfort for me, for many other people in other countries, it is a tragedy. My mental support to all of you, wherever you are.

So what has happened since Time to Think (and act differently)?

All Hands On Deck

In the past two weeks, it has become clear that a global pandemic as this one requires an “All Hands On Deck” mentality to support the need for medical supplies and in particular respiration devices, so-called ventilators. Devices needed to save the lives of profoundly affected people. I have great respect for the “hands” that are doing the work in infectious environments.

Due to time pressure, innovative thinking is required to reach quick results in many countries. Companies and governmental organizations have created consortia to address the urgent need for ventilators. You will not see so much PR from these consortia as they are too busy doing the real work.

Still, you see from many of the commercial participants their marketing messages, why, and how they contribute to these activities.

One of the most promoted capabilities is PLM collaboration on the cloud as there is a need for real-time collaboration between people that are under lockdown. They have no time setting-up environments and learning new tools to use for collaboration.

For me, these are grand experiments, can a group of almost untrained people corporate fast in a new environment.

For sure, offering free cloud software, PLM, online CAD or 3D Printing, seems like a positive and compassionate gesture from these vendors. However, this is precisely the wrong perception in our PLM-world – the difficulty with PLM does not lie necessary in the tools.

 

It is about learning to collaborate outside your silo.

Instead of “wait till I am done” it should become “this is what I have so far – use it for your progress”. This is a behavior change.

Do we have time for behavioral changes at this moment? Time will tell if the myth will become a reality so fast.

A lot of thinking

The past two weeks were weeks of thinking and talking a lot with PLM-interested persons along the globe using virtual meetings.

As long as the lockdowns will be there I keep on offering free of charge PLM coaching for individuals who want to understand the future of PLM.

Through all these calls, I really became THE VirtualDutchman in many of these meetings (thanks Jagan for the awareness).

I realized that there is a lot of value in virtual meetings, in particular with the video option on. Although I believe video works well when you had met before as most of my current meetings were with people, I have met before face-to-face. Hence, you know each other facial expressions already.

I am a big fan of face-to-face meetings as I learned in the past 20 years that despite all the technology and methodology issues, the human factor is essential. We are not rational people; we live and decide by emotions.

Still, I conclude that in the future, I could do with less travel, as I see the benefits from current virtual meetings.

Less face-to-face meetings will help me to work on a more sustainable future as I am aware of the impact flying has on the environment. Also, talking with other people, there is the notion that after the lockdowns, virtual conferencing might become more and more a best practice. Good for the climate, the environment, and time savings – bad for traditional industries like aircraft carriers, taxis, and hotels. I will not say 100 % goodbye but reduce.

A Virtual PLM conference!

I was extremely excited to participate in the upcoming PLM Innovation Forum (PLMIF) starting on April 28th, organized by TECHNIA. I have been visiting the event in the past a few times in Stockholm. It was a great place to meet many of the people from my network.

This time I am even more excited as the upcoming PLMIF will be a VIRTUAL conference with all the aspects of a real conference – read more about the conference here.

There will be an auditorium where lectures will be given, there are virtual booths, and it will be a place to network virtually. In my next post, I hope to zoom in on the conference.

Sustainability, a circular economy, and modern PLM should go together. Since 2014, these topics have been on the agenda of the joint CIMdata Roadmap/PDT conferences. Speakers like Amir Rashid KTH Sweden, Ken Webster Ellen MacArthur Foundation, and many others have been talking about the circular economy.

The Scandinavian mindset for an inclusive society for people and the environment for sure, has influenced the agenda. The links above lead to some better understanding of what is meant by a circular economy and a sustainable future, as also the short YouTube movie below:

The circular economy is crucial for a sustainable future. Therefore, I am looking forward to participating in the upcoming PLM Innovation Forum on April 28th, where it will be all about digitalization for sustainable product development and manufacturing. Hopefully, with the right balance towards the WHY-side of our brain, not so much about WHAT.

You are welcomed to register for free here: the virtual PLM Innovation Forum – we might meet there (virtually).

The PLM Green Alliance

The PLM Green Alliance had been announced some months ago, started by Rich McFall and supported by  Bjorn Fidjeland,  Oleg Shilovitsky, and me.

It was the first step to proactively bringing people together to discuss topics like reducing our carbon footprint, sharing and brainstorming about innovations that will lead to a sustainable future for ourselves and our children, grand-grand-children. The idea behind the PLM Green Alliance is that a proactive approach is much cheaper in the long term as we can still evaluate and discuss options.

This brings me back to the All hands On Deck approach we currently use for fighting the COVID-19 virus.

In a crisis mode, the damage to the people and the economy is severe. Besides, in a crisis mode, a lot of errors will be made, but don’t blame or joke about these people that are trying. Without failure, there is no learning.

We are in a potential time of disruption as the image shows below, but we do not have the complete answers for the future

Think about how you could pro-actively work on a sustainable future for all of us. This will be my personal target, combined with explaining and coaching companies related to topics of modern PLM, during the current lockdown and hopefully long after. The PLM Green Alliance is eager to learn from you and your companies where they are contributing to a more sustainable and greener future.

Do not feel your contribution is not needed, as according to research done by the Carr Center’s Erica Chenoweth: The ‘3.5% rule’: How a small minority can change the world. It could be an encouragement to act instead of watching who will determine your future.

Conclusion

While learning to live in a virtual world, we might be realizing that the current crisis is an opportunity to switch faster to a more sustainable and inclusive society. For PLM moving to data-driven, cloud-based environments, using a Model-Based approach along the whole lifecycle, is a path to reduce friction when delivering innovations. From years to weeks? Something we wished to have today already. Stay safe!

This post is based on a mix of interactions I had the last two weeks in my network, mainly on LinkedIn.  First, I enjoyed the discussion that started around Yoann Maingon post: Thoughts about PLM Business models. Yoann is quite seasoned in PLM, as you can see from his LinkedIn profile, and we have had interesting discussions in the past, and recently about a new PLM-system, he is developing Ganister PLM, based on a flexible Graph database.

Perhaps in that context, Yoann was exploring the various business models. Do you pay for the software (and maintenance), do you pay through subscription, what about a modular approach or a full license for all the functionality? All these questions made me think about the various business models that I encountered and how hard it is for a customer to choose the optimal solution.  And is the space for a new type of PLM? Is there space for free PLM? Some of my thoughts here:

PLM vendors need to be profitable

One of the most essential points to consider is that whatever PLM solution you are aiming to buy, make sure that your PLM vendor has a profitable business model. As once you started with a PLM solution, it is your company’s IP that will be stored in this environment, and you do not want to change every few years your PLM system. Switching PLM systems would be affordable if the PLM system would store their data in a standard format – I will share a more in-depth link under PLM and standards.

For the moment, you cannot state PLM vendors endorse standards. None of the real PLM vendors have a standardized data model, perhaps closest to standards are Eurostep, who have based that ShareAspace solution on top of the PLCS (ISO 10303) standard. However, ShareAspace is more positioned as a type of middleware, connecting between OEMs/Owner/Operators and their suppliers to benefit for standardized connectivity.

Coming back to the statement, PLM Vendors need to be profitable to provide a guarantee for the future of your company’s data is the first step. The major PLM Vendors are now profitable as during a consolidation phase starting 15 years ago, a lot of non-profitable PLM Vendors disappeared. Matrix One, Agile, Eigner & Partner PLM are the best-known companies that were bought for either their technology or market share. In that context, you might also look at OnShape.

Would they be profitable as a separate company, or would investors give up? To survive, you need to be profitable, so giving software away for free is not a good sign (see the software for free paragraph) as a company needs continuity.

PLM startups

In the past 10 years, I have seen and evaluated several new PLM companies. All of them did not really change the PLM paradigm, most of them were still focusing on being an engineering collaboration tools. Several of these companies have in their visionary statement that they are going to be the “Excel killer.” We all know Excel has the best user interface and capabilities to manipulate a collection of metadata.

Very popular is the BOM in Excel, extracted from the CAD-system (no need for an “expensive” PDM or PLM) or BOM used to share with suppliers and stakeholders (ERP is too rigid, purchasing does not work with PDM).

The challenge I see here is that these startups do not bring real new value. The cost of manipulating Excels is a hidden cost, and companies relying on Excel communication are the type of companies that do not have a strategic point of view. This is typical for Small and Medium businesses where execution (“let’s do it”) gets all the attention.

PLM startups often collect investor’s money because they promise to kill Excel, but is Excel the real problem? Modern PLM is about data sharing, which is an attitude change, not necessarily a technology change from Excel tables to (cloud) shared tables. However, will one of these “new Excel killers” PLMs be disruptive? I don’t think so.

PLM disruption?

A week ago, I read an interview with Clayton Christensen (thanks Hakan Karden), which I shared on LinkedIn a week ago. Clayton Christensen is the father of the Disruptive Innovation theory, and I have cited him several times in my blogs. His theory is, in my opinion, fundamental to understand how traditional businesses can be disrupted. The interview took place shortly before he died at the age of 67. He died due to complications caused by leukemia.

A favorite part of this interview is, where he restates what is really Disruptive Innovation as we often talk about disruption without understanding the context, just echoing other people:

Christensen: Disruptive innovation describes a process by which a product or service powered by a technology enabler initially takes root in simple applications at the low end of a market — typically by being less expensive and more accessible — and then relentlessly moves upmarket, eventually displacing established competitors. Disruptive innovations are not breakthrough innovations or “ambitious upstarts” that dramatically alter how business is done but, rather, consist of products and services that are simple, accessible, and affordable. These products and services often appear modest at their outset but over time have the potential to transform an industry.

Many of the PLM startups dream and position themselves as the new disruptor.  Will they succeed? I do not believe so if they only focus on replacing Excel, there is a different paradigm needed. Voice control and analysis perhaps (“Hey PLM if I change Part XYZ what will be affected”)?

This would be disruptive and open new options. I think PLM startups should focus here if they want my investment money.

PLM for free?

There are some voices that PLM should be free in an analogy to software management and collaboration tools. There are so many open-source software management tools, why not using them for PLM? I think there are two issues here:

  • PLM data is not like software data. A lot of PLM data is based on design models (3D CAD / Simulation), which is different from software. Designs are often not that modular as software for various reasons. Companies want to be modular in their products, but do they have the time and resources to reinvent their existing product. For software, these costs are so much lower as it is only a brain exercise. For hardware, the impact is significant. Bringing me to the second point.
  • The cost of change for hardware is entirely different compared to software. Changing software does not have an impact on existing stock or suppliers and, therefore, can be implemented once tested for its purpose. A hardware change impacts the existing production process. First, use the old parts before introducing the change, or do we accept the (costs) of scrap. Is our supply chain, or are our production tools ready to deliver continuity for the new version? Hardware changes are costly, and you want to avoid them. Software changes are cheap, therefore design your products to be configurable based on software (For example Tesla’s software controlling the features to be allowed)

Now imagine, with enough funding, you could provide a PLM for free.  Because of ease of deployment, this would be very likely a cloud offering, easy and scalable. However, all your IP is in that cloud too, and let’s imagine that the cloud is safer than on-premise, so it does not matter in which country your data is hosted (does it ?).

Next, the “free” PLM provider starts asking a small service fee after five years, as the promised ROI on the model hasn’t delivered enough value for the shareholders, they become anxious. Of course, you do not like to pay the fee. However, where is your data, and what happens when you do not pay?

If the PLM provider switches you off, you are without your IP. If you ask the PLM provider to provide your data, what will you get? A blob of XML-files, anything you can use?

In general, this is a challenge for all cloud solutions.

  • What if you want to stop your subscription?
  • What is the allowed Exit-strategy?

Here I believe customers should ask for clarity, and perhaps these questions will lead to a renewed understanding that we need standards.

PLM and standards

We had a vivid discussion in the blogging community in September last year. You can read more related to this topic in my post: PLM and the need for standards which describes the aspects of lock-in and needs for openness.

Finally, a remark related to the PLM-acronym. Another interesting discussion started around Joe Barkai’s post: Why I do not do PLM . Read the comments and the various viewpoint on PLM here. It is clear that the word PLM unites us all; however, the interpretation is different.

If someone in the street asks me what is your profession, I never mention I do PLM. I say: “I assist mainly manufacturing companies in redesigning their business processes using best practices and modern digital technologies”. The focus is on the business value, not on the ultimate definition of PLM

Conclusion

There are many business aspects related to PLM to consider. Yoann Maingon’s post started the thinking process, and we ended up with the PLM-definition. It all illustrates that being involved in PLM is never a boring journey. I am curious to learn about your journey and where we meet.

To avoid that software geeks are getting curious about the title – in this context, ALM means Asset Lifecycle Management. In 2008 I was active for SmarTeam to promote PLM concepts relevant for Asset Lifecycle Management. The focus was on PLM being complementary to asset operation management (EAM Enterprise Asset Management and MRO – Maintenance Repair and Overhaul).

This topic has become actual for me in the past two months, having discussed and seen (PDT) the concepts of a model-based approach for assets and constructions. PLM, ALM, and BIM converge conceptually. Every year I give a one-day update from the field for students doing a master for PLM & BIM on top of their engineering/architectural background. Five years ago, there was no mentioning of BIM, now the ratio of BIM-oriented students has become significant. For me it is always great to see young students willing to learn PLM or BIM on top of their own skillset. Read more about this particular Master class in French when you click on the logo to the left.

In 2012 I started to explain PLM benefits to EPC companies (Engineering Procurement Construction), targeting a more profitable and efficient delivery of their constructions (oil platform, plant, building, infrastructure). The simplified reasoning behind using PLM was related to a more efficient and quality of multidisciplinary collaboration, reducing costly fixes during construction, and smoothening the intensive process of data handover.

More and more in the process industry, standards, like ISO 15926 (Process Industry) and ISO 19650 (BIM – mainly in the UK), became crucial.  At that time, it was difficult to convince companies to focus on the horizontal-integrated process instead of dedicated, disconnected tools. Meanwhile, this has changed, thanks to the Digital Twin hype. Let’s have a look.

PLM and ALM

The initial value for using PLM concepts complementary to MRO systems came from the fact that MRO systems are mainly focusing on plant operations. You could compare these systems with ERP systems for manufacturing companies, focusing execution and continuous operation. Scheduled maintenance and inspections are also driven by the MRO system. Typical MRO systems are Maximo and SAP PM. PLM could deliver configuration management, linking the design intent to the physical implementation. Therefore provide higher data quality, visibility, and traceability of the asset history.

The SmarTeam data model for Asset Lifecycle Management

In 2010, I shared these concepts in two posts: Asset Lifecycle Management using a PLM-system and PLM for Asset Lifecycle Management and Asset Development based on lessons learned with some (nuclear) plant owner/operators. They started to discover the need for configuration management to ensure data quality for operations. In 2010-2014 the business case using PLM complementary to MRO was data quality and therefore reduced down-time when executing large maintenance programs (dependencies between the individual projects were not visible without PLM)

In MRO-systems, like in ERP-systems, the data for execution is based on information coming from various engineering sources – specifications, PFDs, P&IDs.  Questions owner/operators ask themselves are:

  • What are the designed operational settings?
  • Are the asset parameters currently running as designed?
  • What is the optimized maintenance period?
  • Can we stretch maintenance intervals?
  • Can we reduce inspections?
  • Can we reduce downtime for maintenance and overhaul?
  • What about predictive maintenance?

Most of these questions are answered by experts that use their tacit knowledge and experience to give the best so far answers. And when the answers were wrong, they were accepted as new learning points. Next time we won’t make this mistake, and the experts become even more knowledgeable.

Now, these questions could be answered if you can model your asset in a virtual environment. In the virtual world, you would use simulation models, logical models, and 3D Models to describe the asset. This is where Model-Based Systems Engineering practices are used. However, these models need to be calibrated based on reality. And that is where IoT and Asset Operation Monitoring comes in connecting physical behavior with virtual predicted behavior. You can read more about this relationship in my post: Will MBSE the new PLM instead of IoT?

PLM and BIM

In 2014 when I started to discuss PLM concepts with EPC-companies (Engineering, Procurement, and Construction), mainly in the Oil & Gas industry. Here excellent asset development tools (AVEVA, Intergraph, Bentley) are the standard, and as the purpose of an EPC company is to deliver a plant or platform. Each software tool has its purpose and there is no lifecycle strategy.  The value PLM could bring was providing a program overview (complementary with Primavera), standardization, multidisciplinary coordination and visibility across projects to capture knowledge.

Most of the time, the EPC companies did not see the value of optimizing themselves as this was accepted in the process. Even while their productivity and cost due to poor quality (fixing during construction /commissioning) were absurd (10-20 % of the project budget). Cultural change – think longer instead of fix later – was hard to explain. In the end, the EPC was not responsible for operations, so why bother that much?

My blog posts: PLM for all Industries and 2014 – the year that the construction industry did not discover PLM illustrate the challenge at that time. None of the EPCs and construction companies had the, that improving collaboration based on information-continuity (not data-driven yet) could bring the significant benefits, despite their relatively low-profit margin (1- 3 % is considered excellent). Breaking the silos is too.

Two recent trends, however, changed the status quo that existed.

First of all, more and more, the owner/operator does not want to be responsible for the maintenance and operations of the asset. The typical EPC-companies now became DBO-companies (Design Build and Operate), this requires lifecycle thinking for these companies as most of the costs of an asset are during its maintenance and operation phase.

Advanced Thinking (read: (Model-Based) Systems Engineering) can help these companies to shift their focus on a more sustainable design of the asset for the future and get rewarded for that. In the old EPC-model, the target was “just” to deliver as specified.

A second significant trend is the availability of cloud infrastructure for the construction world. A cloud infrastructure does not require considerable investment for the stakeholders in a construction project. By introducing BIM in a common data environment (CDE), a comparable infrastructure to PLM is created and likely the Maintenance-and-Operatie stakeholder is eager to have the full virtual definition here for the future. Read more about BIM and CDE for example, here: CDE – strategic BIM process tool.

Of course, technology and standards are there to collaborate. Now it is up to the stakeholders involved to develop new skills for collaboration (learn or hire) and implement them through new ways of working. A learning process can never be pushed by a big-bang, so make sure your company operates in two modes while learning.

As I mentioned the Maintenance-and-Operate stakeholders or in traditional cases, the Owner/Operators are incredibly interested in a well-defined virtual model of the asset. This allows them to analyze and simulate the implementation of fixes and enhancements for the future with an optimum result. Again we are talking about a digital twin of the asset here

Conclusion

Even though the digital twin is on the top of the Gartner Hype cycle, it has become already a vital principle to implement in particular for substantial, critical assets. As these precious assets, minor inefficiencies in data continuity can still be afforded to learn. From the moment companies have established a digital continuity between their virtual and physical assets, the concept for Digital Twin can also be profitable (and required) for other industries. In particular when these companies want to deliver their products as a service.

 

Note: I have been talking this year a lot about the challenges of digital transformation applied to PLM in particular. During PI PLMx London 2020 on February 3 and 4, I will lead a Think Thank session related to the challenge of connecting your PLM transformation to your executives’ vision (and budget). See you there ?

Potential digital transformation is everywhere. This time I want to share a personal story based on my IoT cycling device from Garmin. Several years ago I became an enthusiastic cyclist, mainly because it clears your mind and cycling keeps you in good shape after enjoying customer visits with great dinners and excellent breakfasts. As the Dutch lack real mountains, we challenge ourselves with through open fields with strong winds to suffer a little too.

 

Four years ago, started tracking my cycling performance, with a Garmin Edge 810. The story of my Garmin is a real IoT story. GPS trackers, in the beginning, did not communicate with the outside world. Now, this device connects to sensors registering my speed, my location, my heart rate, pedal cadence and produced power at any time, finally uploading it to the Garmin Connect platform.

The IoT platform

The Garmin Connect platform gives me insights on my performance, activities, and segments. The segment demonstrates the social part of the platform. Here you can see how you rank with others who have cycled the same track segment over time. And you can register your own preferred segment too, where you challenge yourself and others in your area. So the number of segments is growing continuously. Imagine all these cyclists around the world virtually sharing and taking the same track. I am curious to learn from Garmin how many people are connected to the platform.
I could not find these numbers. You?

The fun of segments

Digital Twin

Through the platform, Garmin collects huge amounts of data of connected users. Each data set of the connected user could be considered a simple digital twin. The Connect platform provides me insights about my overall performance through the years through various reports. Garmin could offer as a (paid) service to deliver insights of my performance compared to other users and propose predictive enhancements similar to the GE Predix platform. The difference of course that 1 % performance improvement for me in cycling does not bring the same value as 1 % performance improvement of a GE product (turbine, jet engine, train, …). However, the concept is the same and GE is promoting themselves as the next Digital Industrial Company, leading in digital transformation. Read more here.

Digital Twin performance

Connecting to the customer

Tthe change from moving from a document-driven approach towards a data-driven approach to collect and store information is not the main concept behind a digital transformation. The data-driven approach is an enabler to connect directly to the customer and change the current business model from delivering products into a business model delivering services or even more advanced delivering experiences. Services and experiences create a closer relation to the customer, more loyalty, but also the challenge that you need to connect to the customer in such a way that the customer sees value. Otherwise, the customer will switch to another service or experience. The Apple, Nespresso, Uber experiences are all known for their new ways of connecting to the customer, differentiating from traditional product sales. Garmin could also be on that list. However, I discovered they are not there yet, despite an IoT-platform and connected devices. What is missing?

Why Garmin is not a digital enterprise.

Two years ago my Garmin Edge started crashing in the middle of a ride. The system rebooted after some minutes, and the recordings were lost or at least unreadable.  When I contacted Garmin support their standard response was: “Please reset the device and update to the latest software.” Two years ago the software had still bug fixes. After two years you would expect a stable experience.

However, a year ago the problems started to become more frequent. I started to send log files illustrating where the error occurred. Still, the Garmin response was the same: “Please reset the device and update to the latest software.”
However as there were no new software updates, there must be another reason why the device failed more and more.

After pushing for a resolution, the service department concluded I needed a new device. There might be an issue with the hardware. A little bit skeptical I agreed on a hardware switch again, and as expected this did not solve the crashes. My guess is that due to the increasing amount of segments at some places, the software gets confused where the rider is exactly located and in which direction the rider is going. These are the moments when the crash happens, and this is probably a software issue.

Still, the Garmin help desk believes there is a hardware problem (preferably swap the device) where I kept on providing evidence data of crashes to support Garmin in their error-discovery. Till now there is no resolution. The good news is that Garmin support mentioned investigating further.

For me, the interaction with Garmin illustrates that the company internally is not yet digital transformed. The service desk probably has KPIs (Key Performance Indicators) related to their response time and problem resolution time. Although I can debate the response time, it is clear that the problem resolution approach: Update to the latest software and if this does not work swap to a new device is not increasing the knowledge from Garmin as a company what their customers are experiencing.

Apparently, their software management is disconnected from the service department and customers. Only clear bugs during the first launch are fixed. Next, it is a disconnected world again.

A must for a digital enterprise is to dive into customer issues and to connect them back to R&D, both for the hardware part and software part. Something a modern product manager would do. If a company is not able to understand the multidisciplinary dependencies and solve issues from the field (with some effort), they will keep on making the same mistakes again with new product launches and lose customers who are looking for a better experience.

My conclusion

PLM should be part of the digital enterprise too as this is the only way to deliver consistent customer value and positive experience. It requires companies to break down silos and create multidisciplinary teams that are capable of supporting the full customer journey. A digital device and a digital customer platform are just facades to the outside world – the inside needs to change too.

What do you think?
Does your company understand the challenges to transform across all disciplines?
Are you managing PLM, ALM, and IoT in context of the product and across the whole lifecycle?
I am curious !

PLM and IPTwo terms pass me every day: Digital Transformation appears in every business discussion, and IP Security, a topic also discussed in all parts of society. We realize it is easy to steal electronic data without being detected (immediately).

What is Digital Transformation?

Digital Transformation is reshaping business processes to enable new business models, create a closer relation with the market, and react faster while reducing the inefficiencies of collecting, converting and processing analog or disconnected information.

Digital Transformation became possible thanks to the lower costs of technology and global connectivity, allowing companies, devices, and customers to interact in almost real-time when they are connected to the internet.

IOTIoT (Internet of Things) and IIoT (Industrial Internet of Things) are terms closely related to Digital Transformation. Their focus is on creating connectivity with products (systems) in the field, providing a tighter relation with the customer and enabling new (upgrade) services to gain better performance. Every manufacturing company should be exploring IoT and IIoT possibilities now.

Digital Transformation is also happening in the back office of companies. The target is to create a digital data flow inside the company and with the outside stakeholders, e.g., customers, suppliers, authorities. The benefits are mainly improved efficiency, faster response and higher quality interaction with the outside world.

digitalPLMThe part of Digital Transformation that concerns me the most is the domain of PLM. As I have stated in earlier posts (Best Practices or Next Practices ? / What is Digital PLM ?), the need is to replace the classical document-driven product to market approach by a modern data-driven interaction of products and services.

I am continually surprised that companies with an excellent Digital Transformation profile on their websites have no clue about Digital Transformation in their product innovation domain. Marketing is faster than reality.

PIBerlin2017-1I am happy to discuss this topic with many of my peers in the product innovation world @ PI Berlin 2017, three weeks from now. I am eagerly looking to look at how and why companies do not embrace the Digital Transformation sooner and faster. The theme of the conference, “Digital Transformation: From Hype to Value “ says it all. You can find the program here, and I will report about this conference the weekend after.

IP Security

The topic of IP protection has always been high on the agenda of manufacturing companies. Digital Transformation brings new challenges. Digital information will be stored somewhere on a server and probably through firewalls connected to the internet. Some industries have high-security policies, with separate networks for their operational environments. Still, many large enterprises are currently struggling with IP security policies as sharing data while protecting IP between various systems creates a lot of administration per system.

dropboxCloud solutions for sharing data are still a huge security risk. Where is the data stored and who else have access to it? Dropbox came in the news recently as “deleted” data came back after five years, “due to a bug.” Cloud data sharing cannot be trusted for real sensitive information.

Cloud providers always claim that their solutions are safer due to their strict safety procedures compared to the improvident behavior of employees. And, this is true. For example, a company I worked with had implemented Digital Rights Management (DRM) for internal sharing of their IP, making sure that users could only read information on the screen, and not store it locally if they had an issue with the server. “No problem”, one of the employees said, “I have here a copy of the documents on my USB-drive.

lockedCloud-based PLM systems are supposed to be safer. However, it still matters where the data is stored; security and hacking policies of countries vary. Assume your company´s IP is safe for hacking. Then the next question is “How about ownership of your data?”

Vendor lock-in and ownership of data are topics that always comes back at the PDT conferences (see my post on PDT2016). When a PLM cloud provider stores your product data in a proprietary data format, you will always be forced to have a costly data migration project when you decide to change from the provider.

Why not use standards for data storage? Hakan Kårdén triggered me on this topic again with his recent post: Data Is The New Oil So Make Sure You Ask For The Right Quality.

 

Conclusion:

Digital Transformation is happening everywhere but not always with the same pace and focus. New PLM practices still need to be implemented on a larger scale to become best practices. Digital information in the context of Intellectual Property creates extra challenges to be solved. Cloud providers do not offer yet solutions that are safe and avoiding vendor lock-in.

Be aware. To be continued…

Many thanks (again) to Dick Bourke for his editing suggestions

 

clip_image001The past year I have written about PLM in the context of digital transformation, relevant for companies that deliver products to the market. Some years ago, I have advocated the value of a PLM infrastructure for EPC companies and Owners/Operators of a plant.

EPC stands for Engineering, Construction, and Procurement, a typical name for often large capital-intensive projects, executed by a consortium of companies. Together they create buildings, platforms, plants, infrastructure and more one-off deliveries, which will be under control of the Owner/Operator after going-live.

Some references:

2014 EPC related: The year the construction industry did not discover PLM

2013 Owner/Operators related: PLM for all industries?

As you can see from the dates, these posts are not the most recent posts. Meanwhile, EPC-based businesses are discovering the value of a PLM infrastructure. Main component for them is BIM (Building Information Model or Building Information Management) and they use cloud-based collaboration environments to be more cost-efficient. Slowly these companies are moving to a single repository of the data supporting multidisciplinary collaboration related to a BIM model to guarantee a continuity of data and better execution. I am positive about EPC companies that are discovering the value of PLM- It might be slightly different from classical product-selling companies, mainly because data ownership is different. In an EPC environment many companies are responsible for parts of the data and each of them keeps the real knowledge as IP (Intellectual Property) for themselves. They only “publish” deliverables. For companies that deliver products to the market, the OEM keeps responsibility for all relevant product information and h has a different strategy.

 

clip_image003I worked in the past with one of my peers, Bjorn Fidjeland (www.plmpartner.com) on PLM for EPCs and Owner/Operators. We share the same passion to bring PLM outside traditional industries. As Bjorn is now more active than I am in this domain, I recommend to read Bjorn´s posts on this topic. For example:

EPC related 2016: Handover to logistics and supply chain in capital projects

Owner/Operators 2015: Plant Information Management – Information Structures

Bjorn provides a lot of details, which are important as implementing PLM for EPCs or Owner/Operators requires different data structures. I wrote about these concepts in 2014 in two posts – PLM and/or SLM ?  post 1 and post 2. At that time not realizing the virtual twin was becoming popular.

PLM complementary to EAM

The last year I have explored these concepts together with (potential) Owner/Operators of a plant, where PLM would be complementary to their EAM system. In the world of Owner/Operators, Enterprise Asset Management (EAM) software is the major software these companies use. You find some of the major EAM players here.

You will discover that all these software suites are good for plant operations, but they all have a challenge to support data consistency and quality in particular when dealing with plant changes and efficient, high-quality  plant information management. Versioning and status management, typical PLM capabilities are often not there.

Owner/Operators have challenges with EAM environments as:

  • EAM systems are designed to support an as-operated environment, assuming all data it correct. Support for Maintenance, Repair or Overhaul projects is often rudimentary and depending on document-driven processes. The primary business process of these companies is producing continuously, such as, electricity or chemicals. Therefore typical engineering projects to change or enhance the main production process do not have the same financial focus.
  • A document-driven approach is the de facto standard common for these industries. Most of the time because the plant has been established through an EPC approach, which was 100 % document-driven due to the different disconnected disciplines/tools working at that time in the EPC project. As the asset information is stored and delivered in documents, most owners/operators keep the document-driven approach for future change projects.

Owners/operator can benefit significantly from a data-driven PLM system as complementary infrastructure to their EAM system. The PLM system will be the source for accurate asset information, manage the change and approvals for the assets and ultimately push the new released information to the EAM system. The PLM system will offer the full history an traceability of decisions made, important for regulatory bodies or insurance companies.

.A data-driven approach for asset information allows owners/operators to benefit from efficient processes, reducing strongly the amount of people required to process data (documents) or reducing the time for people working in maintenance and operations to search for data. I found a nice slide from IBM explaining the concept of PLM an EAM collaboration – see below:

clip_image005

The same benefits modern digital enterprises will have related to a data-driven approach will come available for owner/operators. Operational management is supported by the EAM system combined with real-time capabilities provided by a modern PLM systems to analyze, design and deliver changes to the plant without a costly data conversion process (e.g. compiling new documents) and disconnected processes.

Moving to a virtual twin

clip_image007Interesting enough the digital transformation is bringing the concepts of connecting engineering, manufacturing and operations together into an infrastructure of digital platforms interacting together. Where owners/operators historically do not focus on optimizing the engineering process to build and maintain their assets, in the “classical” industries companies were not really focusing on how products behaved in the field after they were delivered. With digital continuity (the digital thread) and IoT now these “classical” companies can connect to their products in the field. Their products become assets of information, and in case these companies change their business offering into leasing products and services, these assets become managed assets, like the assets owner/operators are managing.

The concept of a virtual twin (or digital twin – image proprietary of GE) , where a virtual model-based environment is linked to one or more real instances in operations, is the dream of all industries. Preparing, Simulating and verifying changes in a virtual world is so much more efficient and cheaper that is allows for higher quality of products and in the case of plant operators higher safety will be the number one topic.

Conclusion

What I have learned so far from plant owners/operators is that they are struggling to grasp a modern digital enterprise concept as their current environment is not model-based but document-driven. Starting with PLM to complement their EAM system could be a first step to understand the value and business benefits of digital continuity. It requires a new way of thinking which is not a commodity at this time. It will happen in the next 5 to 10 years. Expect it to be driven by the realization of virtual twins in the industry and further BIM maturity. The future is model-based !!!

p.s. I am happy to announce WordPress provided a new feature to my blog. In the side panel you can now choose your language (based on Google Translate) if you have difficulties with English. Enjoy !

NL-PLMAs a genuine Dutchman, I was able to spend time last month in the Netherlands, and I attended two interesting events: BIMOpen2015, where I was invited to speak about what BIM could learn from PLM (see Dutch review here) and the second event: Where engineering meets supply chain organized by two startup companies located in Yes!Delft an incubator place working close to the technical university of Delft (Dutch announcement here)

Two different worlds and I realized later, they potential have the same future. So let’s see what happened.

BIMopen 2015

bimopenBIMopen 2015 had the theme: From Design to Operations and the idea of the conference was to bring together construction companies (the builders) and the facility managers (the operators) and discuss the business value they see from BIM.

First I have to mention that BIM is a confusing TLA like PLM. So many interpretations of what BIM means. For me, when I talk about BIM I mean Building Information Management. In a narrower meaning, BIM is often considered as a Building Information Model – a model that contains all multidisciplinary information. The last definition does not deal with typical lifecycle operations, like change management, planning, and execution.

The BIMopen conference started with Ellen Joyce Dijkema from BDO consultants who addressed the cost of failure and the concepts of lean. Thinking. The high cost of failure is known and accepted in the construction industry, where at the end of the year profitability can be 1 % of turnover (with a margin of +/- 3 % – so being profitable is hard).

Lean thinking requires a cultural change, which according to Ellen Joyce is an enormous challenge, where according to a study done by Prof Dr. A. Cozijnsen there is only 19 % of chance this will be successful, compared to 40 % chance of success for new technology and 30 % of chance for new work processes.

succes

It is clear changing culture is difficult and in the construction industry it might be even harder. I had the feeling a large part of the audience did not grasp the opportunity or could find a way to apply it to their own world.

My presentation about what BIM could learn from PLM was similar. Construction companies have to spend more time on upfront thinking instead of fixing it later (costly). In addition thinking about the whole lifecycle of a construction, also in operations can bring substantial revenue for the owner or operator of a construction. Where traditional manufacturing companies take the entire lifecycle into account, this is still not understood in the construction industry.

This point was illustrated by the fact that there was only one person in the audience with the primary interest to learn what BIM could contribute to his job as facility manager and half-way the conference he still was not convinced BIM had any value for him.

PLMandBIM

A significant challenge for the construction industry is that there is no end-to-end ownership of data, therefore having a single company responsible for all the relevant and needed data does not exist. Ownership of data can result in legal responsibility at the end (if you know what to ask for) and in a risk shifting business like the construction industry companies try to avoid responsibility for anything that is not directly related to the primary activities.

Some larger companies during the conference like Ballast Nedam and HFB talked about the need to have a centralized database to collect all the data related to a construction (project). They were building these systems themselves, probably because they were not aware of PLM systems or did not see through the first complexity of a PLM system, therefore deciding a standard system will not be enough.

whyworryI believe this is short-term thinking as with a custom system you can get quick results and user acceptance (it works the way the user is asking for) however custom systems have always been a blockage for the future after 10-15 years as they are developed with a mindset from that time.

If you want to know, learn more about my thoughts have a look at 2014 the year the construction industry did not discover PLM. I will write a new post at the end of the year with some positive trends. Construction companies start to realize the benefits of a centralized data-driven environment instead of shifting documents and risks.

The cloud might be an option they are looking for. Which brings me to the second event.

Engineering meets Supply Chain

This was more an interactive workshop / conference where two startups KE-Works and TradeCloud illustrated the individual value of their solution and how it could work in an integrated way. I had been in touch with KE-Works before because they are an example of the future trend, platform-thinking. Instead of having one (or two) large enterprise system(s), the future is about connecting data-centric services, where most of them can run in the cloud for scalability and performance.

KE-Works provides a real-time workflow for engineering teams based on knowledge rules. Their solution runs in the cloud but connects to systems used by their customers. One of their clients Fokker Elmo explained how they want to speed up their delivery process by investing in a knowledge library using KE-works knowledge rules (an approach the construction industry could apply too)

image

In general if you look at what KE-works does, it is complementary to what PLM-systems or platforms do. They add the rules for the flow of data, where PLM-systems are more static and depend on predefined processes.

tradecloudTradeCloud provides a real-time platform for the supply chain connecting purchasing and vendors through a data-driven approach instead of exchanging files and emails. TradeCloud again is another example of a collection of dedicated services, targeting, in this case, the bottom of the market. TradeCloud connects to the purchaser’s ERP and can also connect to the vendor’s system through web services.

The CADAC group, a large Dutch Autodesk solution provided also showed their web-services based solution connecting Autodesk Vault with TradeCloud to make sure the right drawings are available. The name of their solution, the “Cadac Organice Vault TradeCloud Adapter” is more complicated than the solution itself.

observationWhat I saw that afternoon was three solutions providers connected using the cloud and web services to support a part of a company’s business flow. I could imagine that adding services from other companies like OnShape (CAD in the cloud), Kimonex (BOM Management for product design in the cloud) and probably 20 more candidates can already build and deliver a simplified business flow in an organization without having a single, large enterprise system in place that connects all.

The Future

InnovDilemmaI believe this is the future and potential a breakthrough for the construction industry. As the connections between the stakeholders can vary per project, having a configurable combination of business services supported by a cloud infrastructure enables an efficient flow of data.

As a PLM expert, you might think all these startups with their solutions are not good enough for the real world of PLM. And currently they are not – I agree. However disruption always comes unnoticed. I wrote about it in 2012 (The Innovators Dilemma and PLM)

Conclusion

Innovation happens when you meet people, observe and associate in areas outside your day-to-day business. For me, these two events connected some of the dots for the future. What do you think? Will a business process based on connected services become the future?

Sometimes we have to study careful to see patterns have a look here what is possible according to some scientists (click on the picture for the article)

 

image

clip_image002Three weeks ago there was the Product Innovation conference in Düsseldorf. In my earlier post (here) I described what I experienced during this event. Now, after all the information is somehow digested, here a more high-level post, describing the visible change in business and how it relates to PLM. Trying to describe this change in non-academic wording but in images. Therefore, I described the upcoming change in the title: from linear to circular and fast.

 

Let me explain this image step by step

In the middle of the previous century, we were thinking linear in education and in business. Everything had a predictable path and manufacturing companies were pushing their products to the market. First local, later in time, more global. Still the delivery process was pretty linear:

clip_image003

This linear approach is reflected in how organizations are structured, how they are aligned to the different steps of the product development and manufacturing process. Below a slide I used at the end of the nineties to describe the situation and the pain; lack of visibility what happens overall.

clip_image005

It is discouraging to see that this situation still exists in many companies.

At the end of the nineties, early 2000, PLM was introduced, conceptually managing the whole lifecycle. In reality, it was mainly a more tight connection between design and manufacturing preparation, pushing data into ERP. The main purpose was managing the collaboration between different design disciplines and dispersed teams.

Jim Brown (Tech-Clarity) wrote at that time a white paper, which is still valid for many businesses, describing the complementary roles of PLM and ERP. See the picture below:

clip_image007

Jim introduced the circle and the arrow. PLM: a circle with iterations, interacting with ERP: the arrow for execution. Here visual it became already clear an arrow does not have the same behavior as a circle. The 100 % linearity in business was gone.

Let´s have a closer look at the PLM circle

This is how PLM is deployed in most organizations:

clip_image009Due to the implementation of siloed systems for PDM, ERP, SCM and more, the flow of information is disconnected when moving from the design domain to the execution domain.

Information is pushed in the ERP system as disconnected information, no longer managed and connected to its design intent.

Next, the ERP system is most of the time not well-equipped for managing after sales and services content. Another disconnect comes up.

Yes, spare parts could be ordered through ERP, but issues appearing at the customer base are not stored in ERP, often stored in a separate system again (if stored beyond email).

The result is that when working in the concept phase, there is no information available for R&D to have a good understanding of how the market or customers work with their product. So how good will it be? Check in your company how well your R&D is connected with the field?

And then the change started …

This could have stayed reality for a long time if there were not a huge business change upcoming. The world becomes digital and connected. As a result, local inefficiencies or regional underperformance will be replaced by better-performing companies. The Darwin principle. And most likely the better performing companies are coming from the emerging markets as there they do not suffer from the historical processes and “knowledge of the past”. They can step into the digital world much faster.

clip_image011In parallel with these fast growing emerging markets, we discovered that we have to reconsider the ways we use our natural resources to guarantee a future for next generations. Instead of spilling resources to deliver our products, there is a need to reuse materials and resources, introducing a new circle: the circular economy.

The circular economy can have an impact on how companies bring products to the market. Instead of buying products (CAPEX) more and more organizations (and modern people) start using products or services in a rental model (OPEX). No capital investment anymore, pay as you go for usage or capacity.

clip_image013This, however, has an impact how traditional companies are organized – you need to be connected to your customers or you are out of business – a commodity.

The digital and connected world can have a huge impact on the products or services available in the near future. You are probably familiar with the buzz around “The Internet of Things” or “Smart and Connected”.

No longer are products depending on mechanical behavior only, more and more products are relying on electrical components with adaptive behavior through software. Devices that connect with their environment report back information to the manufacturer. This allows companies to understand what happens with their products in the field and how to react on that.

Remember the first PLM circle?
Now we can create continuity of data !

PLM_flowCombine the circular economy, the digital and connected world and you will discover everything can go much faster. A crucial inhibitor is how companies can reorganize themselves around this faster changing, circular approach. Companies need to understand and react to market trends in the fastest and adequate way. The future will be probably about lower volumes of the same products, higher variability towards the market and most likely more and more combining products with services (the Experience Model). This requires a flexible organization and most likely a new business model which will differ from the sequential, hierarchical organizations that we know at this moment.

The future business model ?

The flexibility in products and services will more and more come from embedded software or supported by software services. Software services will be more and more cloud based, to avoid IT-complexity and give scalability.

Software development and integration with products and services are already a challenge for classical mechanical companies. They are struggling to transform their mechanical-oriented design process towards support for software. In the long-term, the software design process could become the primary process, which would mean a change from (sequential – streamlined) lean towards (iterative – SCRUM) agile.

Once again, we see the linear process becoming challenged by the circular iterations.

This might be the end of lean organizations, potentially having to mix with agile conepts..

clip_image015If it was a coincidence or not, I cannot judge, however during the PI Conference I learned about W.L. Gore & Associates, with their unique business model supporting this more dynamic future. No need to have a massive organization re-org to align the business, as the business is all the time aligning itself through its employees.

Last weekend, I discovered Semco Partners in the newspaper and I am sure there are more companies organizing themselves to become reactive instead of linear – for sure in high-tech world.

Conclusion:

Linearity is disappearing in business, it is all about reactive, multidisciplinary teams within organizations in order to support customers and their fast changing demands.

Fast reactions need new business organizations models (flexible, non-hierarchical) and new IT-support models (business information platforms – no longer PLM/ERP system thinking)

What do you think ? The end of linear ?

 

I have talked enough about platforms recently. Still if you want to read more about it:

Cimdata: Business strategy and platformization position paper

Engineering.com: Prod. Innovation Platform PlugnPlay in next generation PLM

Gartner: Product Innovation Platforms

VirtualDutchman: Platform, Backbone, Service Bus or BI

picongressCurrently, I am preparing my sessions for the upcoming Product Innovation conference in Düsseldorf. See: www.picongress.com. My first session will be about PLM upgrades and how to deal with them for the future. It is a challenging topic as some PLM vendors claim using their product, there will be no upgrade problems and cloud-based solutions also provide seamless upgrades in the future.

Don’t cheer to early when you see this kind of messages. I had the chance to look back the past twenty years what happened with PLM and tried to look forward to the upcoming ten years what might happen.

In addition, this lead to some interesting thoughts that I will share in detail during the conference. I will come back to this topic in this blog after the conference. Here some unstructured thoughts that passed my mind recently when preparing this session.

Not every upgrade is the same!

imageFirst there was an interesting blog post from Ed Lopategui from E(E) with the title There is No Upgrade, where he addresses the difference between consumer software and enterprise software. Where consumer software will be used by millions and tested through long Alfa and beta cycles, PLM software often comes to the market in what you could consider a beta stage with limited testing.

Most PLM vendors invest a lot of their revenue in providing new functionality and technology based on their high-end customer demands. They do not have the time and budget to invest in the details of the solution; for this reason PLM solutions will remain a kind of framework.

In addition, when a solution is not 100 % complete there will be an adaptation from the customer, making upgrades later, not 100 percent guaranteed or compatible. More details on PLM Upgrades after the conference, let’s look into the near future.

The Future of PLM resides in Brussels!

imageSome weeks ago I was positively amused by some messages coming from Roger Tempest (PLM Interest Group) related to the future of PLM. Roger claims the PLM industry is effectively rudderless. For that Roger announces the Launch Meeting for the PLM International Research Foundation,

“simple because such a platform does not yet exist.”

I checked if perhaps an ERP International Research Foundation existed, but I only found references to SAP, so what makes the PLM International Research Foundation unique ?

According to Roger, the reason behind this initiative is the lack of clear targets for PLM. I quote:

The lack of detailed thought means that many future possibilities for PLM are just not being considered; and the lack of collective thought means that even the current initiatives to improve PLM remain fragmented and ineffective

As I mentioned in the previous paragraph, PLM vendors are in a kind of rat race to keep up with market demands, rapidly changing business, meanwhile building on their core technology. Not an easy game, as they cannot start from scratch, but for sure, and here I agree, they do not optimize their portfolio.

Who can and will take part in such a research forum?

myplmPLM vendors will lean back, as their mission is to be competitive in business, not necessarily constrained by PLM guidelines.

This is the same for companies implementing PLM systems. They are looking for solutions in the market that improve their businesses. This might be a PLM system, but perhaps other components bring even a higher value. Is ALM or SLM part of PLM, for example? This is a challenge as who defined what PLM is and where are the boundaries ?

This leaves the activity to the academics for sure they will have the most advanced and futuristic vision of what is possible conceptually. From my observations, the main challenges currently with PLM are that even the vendors are ten years ahead in their capabilities compared to what most companies are asking for. For the academic approach, I still have to think about Monty Python’s sketch related to soccer. See below

Sorry for the generalization, I believe we should not focus on what is PLM and how PLM should be defined. What we now call PLM is entirely different from what we called PLM 10 years ago, see my last year´s post PLM is changing. I think the future should focus how we are going to deal with business platforms, which contain PLM facets.

The PLM future

imageInteresting enough we are on the brink of a new business paradigm due to globalization and digitization as you might have read from my recent posts. There are analysts, consultancy firms and research foundations all describing this challenging future.

Have a look at this post from Verdi Ogewell’s article at Engineering.com: Product Innovation Platform: Plug’n’play next generation PLM. The post is a summary of the platform discussion during the PDT 2014 conference, which I consider as one of the best conferences if you want to go into the details. See also my post: The weekend after PDT 2014.

The future is about innovation and/or business platforms where data is available based on a federated approach, not necessary based on a single, monolithic PLM platform.

Focusing on standardization and openness of such a platform is for me the central mission we have.

Remember: Openness is a right, not a privilege.

Let PLM vendors and other application providers develop their optimized services for individual business scenarios that will remove the borders of system thinking. Academic support will be needed to solve interoperability and openness required for initiatives like Industry 4.0 and IDC´s third platform.

I am looking forward to interesting discussions at the upcoming
PI conference but also with peers in my network.

The future is challenging and will it still be named PLM?

Your thoughts?

BIM_PLMA year ago I wrote a blog post questioning if the construction industry would learn from PLM practices in relation to BIM.
In that post, I described several lessons learned from other industries. Topics like:

  • Working on a single, shared repository of on-line data (the Digital Mock Up).  Continuity of data based on a common data model – not only 3D
  • It is a mindset. People need to learn to share instead of own data
  • Early validation and verification based on a virtual model. Working in the full context
  • Planning and anticipation for service and maintenance during the design phase. Design with the whole lifecycle in mind (and being able to verify the design)

The comments to that blog post already demonstrated that the worlds of PLM and BIM are not 100 percent comparable and that there are some serious inhibitors preventing them to come closer. One year later, let´s see where we are:

BIM moving into VDC (or BLM ?)

discussThe first trend that becomes visible is that people in the construction industry start to use more and more the term Virtual Design and Construction (VDC)  instead of BIM (Building Information Model or Building Information Management?).

The good news here is that there is less ambiguity with the term VDC instead of BIM. Does this mean many BIM managers will change their job title? Probably not as most construction companies are still in the learning phase what a digital enterprise means for them.

Still Virtual Design and Construction focuses a lot on the middle part of the full lifecycle of a construction. VDC does not necessary connect the early concept phase and for sure almost neglects the operational phase. The last phase is often ignored as construction companies are not thinking (yet) about Repair & Maintenance contracts (the service economy).

And surprisingly, last week I saw a blog post from Dassault Systemes, where Dassault introduced the word BLM (Building Lifecycle Management).  Related to this blog post also some LinkedIn discussions started.  BLM, according to Dassault Systemes, is the combination of BIM and PLM – read this post here.

The challenge however for construction companies is to, what are the related data sets they require and how can you create this continuity of data. This brings us to one of the most important inhibitors.

 

Data Ownership

imageWhere in other industries a clear product data owner exists, the ownership of data in EPC (Engineering, Procurement, Construction) companies, typical for the construction industry or oil & gas industry is most of the times on purpose vague.

First of all the owner of a construction often does not know which data could be relevant to maintain. And secondly, as soon as the owner asks for more detailed information, he will have to pay for that, raising the costs, which not directly flow back to benefits, only later during the FM (Facility Management) /Operational stage.

And let´s imagine the owner could get the all the data required. Next the owner is at risk, as potentially having the information might makes you liable for mistakes and claims.

From discussion with construction owners I learned their policy is not to aim for the full dataset related to a construction. It reduces the risk to be liable. Imagine Boeing and Airbus would follow this approach. This brings us to another important inhibitor.

A risk shifting business

imageThe construction industry on its own is still a risk shifting business, where each party tries to pass the risk of cost of failure to another stakeholder in the pyramid. The most powerful owners / operators of the construction industry quickly play down the risk to their contractors and suppliers. And these companies then then distribute the risk further down to their subcontractors.

If you do not accept the risk, you are no longer in the game. This is different from other industries and I have seen this approach in a few situations.

imageFor example, I was dealing with an EPC company that wanted to implement PLM. The company expected that the PLM implementer would take a large part of the risk for the implementation. As they were always taking the risk too for their big customers when applying for a project. Here there was a clash of cultures, as PLM implementers learned that the risk of a successful PLM implementation is vague as many soft values define the success. It is not a machine or platform that has to work after some time.

imageAnother example was related to requirements management. Here the EPC company wanted to become clear and specific to their customer. However their customer reacted very strange. Instead of being happy that the EPC company invested in more upfront thinking and analysis, the customer got annoyed as they were not used to be specific so early in the process. They told the EPC company, “if you have so many questions, probably you do not understand the business”.

So everyone in the EPC business is pushed to accept a higher risk and uncertainty than other industries. However, the big reward is that you are allowed to have a cost of failure above 15 – 20 percent without feeling bad. Which this percentage you would be out of business in other industries. And this brings us to another important inhibitor.

Accepted high cost of failure

No_roiAs the industry accepts this high cost of failure, companies are not triggered to work different or to redesign their processes in order to lower the inefficiencies. The UK government mandates BIM Level 2 for their projects starting in 2016 and beyond, to reduce costs through inefficiencies.

But will the UK government invest to facilitate and aim for data ownership? Probably not, as the aim of governments is not to be extreme economical. Being not liable has a bigger value than being more efficient for governments as I learned. Being more efficient is the message to the outside world to keep the taxpayer satisfied.

It is hard to change this way of thinking. It requires a cultural change through the whole value chain. And cultural change is the “worst” thing that can happen to a company. The biggest inhibitor.

Cultural change

imageCultural change is a point that touches all industries and there is no difference between the construction industry and for example a classical discrete manufacturing company. Because of global competition and comparable products other industries have been forced already to work different, in order to survive (and are still challenged)

The cultural change lies in people. We (the older generation) are educated and brought up in classical engineering models that reflect the post second world war best practices. Being important in a process is your job justification and job guarantee.

New paradigms, based on a digital world instead of a document-shifting world, need to be defined and matured and will make many classical data processing jobs redundant. Read this interesting article from the Economist: The Onrushing Wave

This is a challenge for every company. The highest need to implement this cultural change is ironically for those countries with the highest legacy: Western Europe / the United-States.

As these countries also have the highest labor cost, the impact of, keep on doing the old stuff, will reduce their competitiveness. The impact for construction companies is less, as the construction industry is still a local business, as at the end resources will not travel the globe to execute projects.

However cheaper labor costs become more and more available in every country. If companies want to utilize them, they need to change the process. They need shift towards more thinking and knowledge in the early lifecycle to avoid the need for high qualified people to be in the field to the fix errors.

Sharing instead of owning

imageFor me the major purpose of PLM is to provide an infrastructure for people to share information in such a manner that others, not aware of the information, can still easily find and use the information in a relevant context of their activities. The value: People will decide on actual information and no longer become reactive on fixing errors due to lack of understanding the context.

The problem for the construction industry is that I have not seen any vendor focusing on sharing the big picture. Perhaps the BLM discussion will be a first step. For the major tool providers, like Autodesk and Bentley, their business focus is on the continuity of their tools, not on the continuity of data.

Last week I noticed a cloud based Issue Management solution, delivered by Kubus. Issue Management is one of the typical and easy benefits a PLM infrastructure can deliver. In particular if issues can be linked to projects, construction parts, processes, customers. If this solution becomes successful, the extension might be to add more data elements to the cloud solution. Main question will remain: Who owns the data ? Have a look:

Cloud based Issues Management

 

For continuity of data, you need standards and openness – IFC is one of the many standards needed in the full scope of collaboration. Other industries are further developed in their standards driven by end-user organizations instead of vendors. Companies should argue with their vendors that openness is a right, not a privilege.

Conclusion

A year ago, I was more optimistic about the construction industry adopting PLM practices. What I have learned this year, and based on feedback from others, were are not at the turning point yet. Change is difficult to achieve from one day to the other. Meanwhile, the whole value chain in the construction industry has different objectives. Nobody will take the risk or can afford the risk.

I remain interested to see where the construction industry is heading.

What do you think will 2015 be the year of a breakthrough?

%d bloggers like this: