You are currently browsing the tag archive for the ‘Configuration Management’ tag.

When I started this series in July, I expected to talk mostly about new ways of working, enabled through a data-driven and model-based approach. However, when analyzing what is needed for such a future (part 3), it became apparent that many of these new ways of working are dependent on technology.

From coordinated to connected sounds like a business change;

however, it all depends on technology. And here I have to thank Marc Halpern (Gartner’s Research VP, Engineering and Design Technologies)  again, who came with this brilliant scheme below:

So now it is time to address the last point from my starting post:

Configuration Management requires a new approach. The current methodology is very much based on hardware products with labor-intensive change management. However, the world of software products has different configuration management and change procedures. Therefore, we need to merge them into a single framework. Unfortunately, this cannot be the BOM framework due to the dynamics in software changes.

Configuration management at this moment

PLM and CM are often considered overlapping. My March 2019 post: PLM and Configuration Management – a happy marriage? shares some thoughts related to this point

Does having PLM or PDM installed mean you have implemented CM? There is this confusion because revision management is considered the same as configuration management. Read my March 2020 post: What the FFF is happening? Based on a vivid discussion launched by  Yoann Maingon, CEO and founder of Ganister, an example of a modern, graph database-based, flexible PLM solution.

To hear it from a CM-side,  I discussed it with Martijn Dullaart in my February 2021 post: PLM and Configuration Management. We also zoomed in on CM2 in this post as a methodology.

Martijn is the Lead Architect for Enterprise Configuration Management at ASML (Our Dutch national pride) and chairperson of the Industry 4.0 committee of the Integrated Process Excellence (IPX) Congress.

As mentioned before in a previous post (part 6), he will be speaking at the PLM Roadmap & PDT Fall conference starting this upcoming week.

In this post, I want to talk about the CM future. For understanding the current situation, you can find a broad explanation here on Wikipedia. Have a look at CM in the context of the product lifecycle, ensuring that the product As-Specified and As-Designed information matches the As-Built and As-Operated product information.

A mismatch or inconsistency between these artifacts can lead to costly errors, particularly in later lifecycle stages. CM originated from the Aerospace and Defense industry for that reason. However, companies in other industries might have implemented CM practices too. Either due to regulations or thanks to the understanding that configuration mistakes can cause significant damage to the company.

Historically configuration management addresses the needs of “slow-moving” products. For example, the design of an airplane could take years before manufacturing started. Tracking changes and ensuring consistency of all referenced datasets was often a manual process.

On purpose, I wrote “referenced datasets,” as the information was not connected in a single environment most of the time. The identifier of a dataset ( an item or a document) was the primary information carrier used for mentally connecting other artifacts to keep consistency.

The Institute of Process Excellence (IPX) has been one of the significant contributors to configuration management methodology. They have been providing (and still offer) CM2 training and certification.

As mentioned before, PLM vendors or implementers suggest that a PLM system could fully support Configuration Management. However, CM is more than change management, release management and revision management.

As the diagram from Martijn Dullaart shows, PLM is one facet of configuration management.

Of course, there are also (a few) separate CM tools focusing on the configuration management process. CMstat’s EPOCH CM tool is an example of such software. In addition, on their website, you can find excellent articles explaining the history and their future thoughts related to CM.

The future will undoubtedly be a connected, model-based, software-driven environment. Naturally, therefore, configuration management processes will have to change. (Impressive buzz word sentence, still I hope you get the message).

From coordinated to connected has a severe impact on CM. Let’s have a look at the issues.

Configuration Management – the future

The transition to a data-driven and model-based infrastructure has raised the following questions:

  • How to deal with the granularity of data – each dataset needs to be validated. For example, a document (a collection of datasets) needs to be validated in the document-based approach. How to do this efficiently?
  • The behavior of a product (or system) will more and more dependent on software. Product CM practices have been designed for the hardware domain; now, we need a mix of hardware and software CM practices.
  • Due to the increased complexity of products (or systems) and the rapid changes due to software versions, how do we guarantee the As-Operated product is still matching the As-Designed / As-Certified definitions.

I don’t have answers to these questions. I only share observations and trends I see in my actual world.

Granularity of data

The concept of datasets has been discussed in my post (part 6). Now it is about how to manage the right sets of connected data.

The image on the left, borrowed from Erik Herzog’s presentation at the PDM Roadmap & PDT Fall conference in 2020, is a good illustration of the challenge.

At that time, Erik suggested that OSLC could be the enabler of a digital CM backbone for an enterprise. Therefore, it was a pleasure to see Erik providing an update at the yearly OSLC Fest conference this week.

You can find the agenda and Erik’s presentation here on day 2.

OSLC as a framework seems to be a good candidate for supporting modern CM scenarios. It allows a company to build full traceability between all relevant artifacts (if digital available). I can see the beauty of the technical infrastructure.

Still, it is about people and processes first. Therefore, I am curious to learn from my readers who believe and experiment with such a federated infrastructure.

More software

Traditional working companies might believe that software should be treated as part of the Bill of Materials. In this theory, you treat software code as a part, with a part number and revision. In this way, you might believe configuration management practices do not have to change. However, there are some fundamental differences in why we should decouple hardware and software.

First, for the same hardware solution, there might be a whole collection of valid software codes. Just like your computer. How many valid software codes, even from the same application, can you run on this hardware? Managing a computer system and its software through a Bill of Materials is unimaginable.

A computer, of course, is designed for running all kinds of software versions. However, modern products in the field, like cars, machines, electrical devices, all will have a similar type of software-driven flexibility.

For that reason, I believe that companies that deliver software-driven products should design a mechanism to check if the combination of hardware and software is valid. For a computer system, a software mismatch might not be costly or painful; for an industrial system, it might be crucial to ensure invalid combinations can exist. Click on the image to learn more.

Solutions like Configit or pure::variants might lead to a solution. In Feb 2021, I discussed in PLM and Configuration Lifecycle Management with Henrik Hulgaard, the CTO from Configit, the unique features of their solution.

I hope to have a similar post shortly with Pure Systems to understand their added value to configuration management.

Software change management is entirely different from hardware change management. The challenge is to have two different change management approaches under one consistent umbrella without creating needless overhead.

Increased complexity – the digital twin?

With the increased complexity of products and many potential variants of a solution, how can you validate a configuration? Perhaps we should investigate the digital twin concept, with a twin for each instance we want to validate.

Having a complete virtual representation of a product, including the possibility to validate the software behavior on the virtual product, would allow you to run (automated) validation tests to certify and later understand a product in the field.

No need for inspection on-site or test and fix upgrades in the physical world. Needed for space systems for sure, but why not for every system in the long term. When we are able to define and maintain a virtual twin of our physical product (on-demand), we can validate.

I learned about this concept at the 2020 Digital Twin conference in the Netherlands. Bart Theelen from Canon Production Printing explained that they could feed their simulation models with actual customer data to simulate and analyze the physical situation. In some cases, it is even impossible to observe the physical behavior. By tuning the virtual environment, you might understand what happens in the physical world.

An eye-opener and an advocate for the model-based approach. Therefore, I am looking forward to the upcoming PLM Roadmap & PDT Fall conference. Hopefully, Martijn Dullaart will share his thoughts on combining CM and working in a model-based environment. See you there?

Conclusion

Finally, we have reached in this series the methodology part, particularly the one related to configuration management and traceability in a very granular, digital environment.  

After the PLM Roadmap & PDT fall conference, I plan to follow up with three thought leaders on this topic: Martijn Dullaart (ASML), Maxime Gravel (Moog) and Lisa Fenwick (CMstat).  What would you ask them?

After “The Doctor is IN,” now again a written post in the category of PLM and complementary practices/domains. In January, I discussed together with Henrik Hulgaard from Configit the complementary value of PLM and CLM (Configuration Lifecycle Management). For me, CLM is a synonym for Product Configuration Management.

PLM and Complementary Practices (feedback)

As expected, readers were asking the question:

“What is the difference between CLM (Configuration Lifecycle Management) and CM(Configuration Management)?”

Good question.

As the complementary role of CM is also a part of the topics to discuss, I am happy to share this blog today with Martijn Dullaart. You probably know Martijn if you are actively following topics on PLM and CM.

Martijn has his own blog mdux.net, and you might have seen him recently in Jenifer Moore’s PLM TV-episode: Why CM2 for Faster Change and Better Documentation. Martijn is the Lead Architect for Enterprise Configuration Management at ASML (Our Dutch national pride) and chairperson of the Industry 4.0 committee of the Integrated Process Excellence (IPX) Congress. Let us start.

Configuration Management and CM2

Martijn, first of all, can you bring some clarity in terminology. When discussing Configuration Management, what is the pure definition, what is CM2 as a practice, and what is IpX‘s role and please explain where you fit in this picture?

Classical CM focuses mainly on the product, the product definition, and actual configurations like as-built and as-maintained of the product. CM2 extends the focus to the entire enterprise, e.g., the processes and procedures (ways of working) of a company, including the IT and facilities, to support the company’s value stream.

CM2 expands the scope to all information that could impact safety, security, quality, schedule, cost, profit, the environment, corporate reputation, or brand recognition.

Basically, CM2 shifts the focus to Integrated Process Excellence and promotes continual improvement.

Next to this, CM2 provides the WHAT and the HOW, something most standards lack. My main focus is still around the product and promoting the use of CM outside the product domain.

For all CM related documentation, we are already doing this.

Configuration Management and PLM

People claim that if you implement PLM as an enterprise backbone, not as an engineering tool, you can do Configuration Management with your PLM environment.

What is your opinion?

Yes, I think that this is possible, provided that the PLM tool has the right capabilities. Though the question should be: Is this the best way to go about it. For instance, some parts of Configuration Management are more transactional oriented, e.g., registering the parts you build in or out of a product.

Other parts of CM are more iterative in nature, e.g., doing impact analysis and making an implementation plan. I am not saying this cannot be done in a PLM tool as an enterprise backbone. Still, the nature of most PLM tools is to support iterative types of work rather than a transactional type of work.

I think you need some kind of enterprise backbone that manages the configuration as an As-Planned/As-Released baseline. A baseline that shows not only the released information but also all planned changes to the configuration.

Because the source of information in such a baseline comes from different tools, you need an overarching tool to connect everything. For most companies, this means that they require an overarching system with their current state of enterprise applications.

Preferably I would like to use the data directly from the sources. Still, connectivity and performance are not yet to a level that we can do this. Cloud and modern application and database architectures are very promising to this end.

 

Configuration Management for Everybody?

I can imagine companies in the Aerospace industry need to have proper configuration management for safety reasons. Also, I can imagine that proper configuration management can be relevant for other industries. Do they need to be regulated, or are there other reasons for a company to start implementing CM processes?

I will focus the first part of my answer within the context of CM for products only.

Basically, all products are regulated to some degree. Aerospace & Defense and Medical Device and Pharma are highly regulated for obvious reasons. Other industries are also regulated, for example, through environmental regulations like REACH, RoHS, WEEE or safety-related regulations like the CE marking or FCC marking.

Customers can also be an essential driver for the need for CM. If, as a customer, you buy expensive equipment, you expect that the supplier of that equipment can deliver per commitment. The supplier can also maintain and upgrade the equipment efficiently with as few disruptions to your operations as possible.

Not just customers but also consumers are critical towards the traceability of the product and all its components.

Even if you are sitting on a rollercoaster, you presume the product is well designed and maintained. In other words, there is often a case to be made to apply proper configuration management in any company. Still, the extent to which you need to implement it may vary based on your needs.

 

The need for Enterprise Configuration Management is even more significant because one of the hardest things is to change the way an organization works and operates.

Often there are different ways of doing the same thing. There is a lot of tribal knowledge, and ways of working are not documented so that people can easily find it, let alone that it is structured and linked so that you can do an impact analysis when you want to introduce a change in your organization.

 

CM and Digital Transformation

One of the topics that we both try to understand better is how CM will evolve in the future when moving to a more model-based approach. In the CM-terminology, we still talk about documents as information objects to be managed. What is your idea of CM and a model-based future?

It is indeed a topic where probably new or changed methodology is required, and I started already describing CM topics in several posts on my enterprise MDUX blog. Some of the relevant posts in this context are:

First, let me say that model-based has the future, although, at the same time, the CM aspects are often overlooked.

When managing changes, too much detail makes estimating cost and effort for a business case more challenging, and planning information that is too granular is not desirable. Therefore, CM2 looks at datasets. Datasets should be as small as possible but not smaller. Datasets are sets of information that need to be released as a whole. Still, they can be released independently from other datasets. For example, a bill of materials, a BOM line item is not a dataset, but the complete set of BOM line items that make up the BoM of an assembly is considered a dataset. I can release a BoM independent from a test plan.

Data models need to facilitate this. However, today, in many PLM systems, a BOM and the metadata of a part are using the same revision. This means that to change the metadata, I need a revision of the BoM, while the BoM might not change. Some changes to metadata might not be relevant for a supplier. Communicating the changes to your supplier could create confusion.

I know some people think this is about document vs. model-centric, but it is not. A part is identified in the ‘physical world’ by its part ID. Even if you talk about allowing revisions in the supply chain, including the part ID’s revision, you create a new identifier. Now every new revision will end up in a different stock location. Is that what we want?

In any case, we are still in the early days, and the thinking about this topic has just begun and needs to take shape in the coming year(s).

 

CM and/or CLM?

As in my shared blog post with Henrik Hulgaard related to CLM, can you make a clear differentiation between the two domains for the readers?

 

Configuration Lifecycle Management (CLM)  is mainly positioned towards Configurable Products and the configurable level of the product.

 

Why I think this, even though Configit’s  CLM declaration states that “Configuration Lifecycle Management (CLM) is the management of all product configuration definitions and configurations across all involved business processes applied throughout the lifecycle of a product.”,
it also states:

  • “CLM differs from other Enterprise Business Disciplines because it focuses on cross-functional use of configurable products.”
  • “Provides a Single Source of Truth for Configurable Data
  • “handles the ever-increasing complexity of Configurable Products“.

I find Configuration Lifecycle Management is a core Configuration Management practice you need to have in place for configurable products. The dependencies you need to manage are enormously complex. Software parameters that depend on specific hardware, hardware to hardware dependencies, commercial variants, and options.

Want to learn more?

In this post, we just touched the surface of PLM and Configuration Management. Where can an interested reader find more information related to CM for their company?

 

For becoming trained in CM2, people can reach out to the Institute for Process Excellence, a company that focuses on consultancy and methodology for many aspects of a modern, digital enterprise, including Configuration Management.

And there is more out there, e.g.:

Conclusion

Thanks, Martijn, for your clear explanations. People working seriously in the PLM domain managing the full product lifecycle should also learn and consider Configuration Management best practices. I look forward to a future discussion on how to perform Configuration Management in a model-based environment.

PLM, CLM, and CM – mind the overlap

 

 

 

 

On March 22 this year, I wrote Time to Think (and act differently) in de middle of a changing world. We were entering a lockdown in the Netherlands due to the COVID-19 virus. As it was such a disruptive change, it was an opportunity to adapt their current ways of working.

The reason for that post was my experience when discussing PLM-initiatives with companies. Often they have no time to sit down, discuss and plan their PLM targets as needed. Crucial people are too busy, leading to an implementation of a system that, in the best case, creates (some) benefits.

The well-known cartoon says it all. We are often too busy doing business as usual, making us feel comfortable. Only when it is too late, people are forced to act.  As the second COVID-19 wave seems to start in the Netherlands, I want to look back on what has happened so far in my eco-system.

Virtual Conferences

As people could not travel anymore, traditional PLM-conferences could not be organized anymore. What was going to be the new future for conferences? TECHNIA, apparently clairvoyant, organized their virtual PLM Innovation Forum as one of the first, end of April.

A more sustainable type of PLM-conference was already a part of their plans, given the carbon footprint a traditional conference induces.  The virtual conference showed that being prepared for a virtual conference pays off during a pandemic with over 1000 participants.

Being first does not always mean being the best,  as we have to learn. While preparing my session for the conference, I felt the same excitement as for a traditional conference. You can read about my initial experience here: The weekend after the PLM Innovation Forum.

Some weeks later, having attended some other virtual conferences, I realized that some points should be addressed/solved:

  • Video conferencing is a must – without seeing people talking, it becomes a podcast.
  • Do not plan long conference days. It is hard to sit behind a screen for a full day. A condensed program makes it easier to attend.
  • Virtual conferences mean that they can be attended live from almost all around the globe. Therefore, finding the right timeslots is crucial for the audience – combined with the previous point – shorter programs.
  • Playing prerecorded sessions without a Q&A session should be avoided. It does not add value.
  • A conference is about networking and discussion – I have not seen a solution for this yet. Fifty percent of the conference value for me comes from face-to-face discussions and coffee meetings. A virtual conference needs to have private chat opportunities between attendees.

In the last quarter of this year, I will present at several merely local conferences, sometimes a mix between “live” with a limited number of attendees, if it will be allowed.

And then there is the upcoming PLM Road Map & PDT Fall 2020 (virtual) conference on 17-18-19 November.

This conference has always been my favorite conference thanks to its continued focus on sharing experiences, most of the time, based on industry standards. We discuss topics and learn from each other. See my previous posts: The weekend after 2019 Day 1, 2019 Day 2, 2018 Day 1, 2018 Day2, 2017 Day 1, 2017 Day 2, etc.

The theme Digital Thread—the PLM Professionals’ Path to Delivering Innovation, Efficiency, and Quality has nothing to do with marketing. You can have a look at the full schedule here. Although there is a lot of buzz around Digital Thread, presenters discuss the reality and their plans

Later in this post, see the paragraph Digital Thread is not a BOM, I will elaborate on this theme.

Getting tired?

I discovered I am getting tired as I am missing face-to-face interaction with people. Working from home, having video calls, is probably a very sustainable way of working.  However, non-planned social interaction, meeting each other at the coffee machine, or during the breaks at a conference or workshop, is also crucial for informal interaction.

Apparently, several others in my eco-system are struggling too. I noticed a tsunami of webinars and blog posts where many of them were an attempt to be noticed. Probably the same reason: traditionally businesses have stalled. And it is all about Digital Transformation and SaaS at this moment. Meaningless if there is no interaction.

In this context, I liked Jan Bosch’s statement in his article: Does data-driven decision-making make you boring? An article not directly addressing the PLM-market; however, there is a lot of overlap related to people’s reluctance to imagine a different future.

My favorite quote:

 I still meet people that continue to express beliefs about the world, their industry, their customers or their own performance that simply aren’t true. Although some, like Steve Jobs, were known for their “reality distortion field,” for virtually all of us, just wishing for something to be true doesn’t make it so. As William Edwards Deming famously said: in God we trust; all others must bring data.

I fully concur with this statement and always get suspicious when someone claims the truth.

Still, there are some diamonds.

I enjoyed all episodes from Minerva PLM TV – Jennifer Moore started these series in the early COVID19-days (coincidence?). She was able to have a collection of interviews with known and less-known people in the PLM-domain. As most of them were vendor-independent, these episodes are a great resource to get educated.

The last episode with Angela Ippisch illustrates how often PLM in companies depends on a few enthusiastic persons, who have the energy to educate themselves. Angela mentions there is a lot of information on the internet; the challenge is to separate the useful information from marketing.

I have been publishing the past five months a series of posts under the joint theme learning from the past to understand the future. In these posts, I explained the evolution from PDM to PLM, resulting in the current item-centric approach with an EBOM, MBOM, and SBOM.

On purpose, one post per every two weeks – to avoid information overflow. Looking back, it took more posts than expected, and they are an illustration of the many different angles there are in the PLM domain – not a single truth.

Digital Thread is not a BOM

I want to address this point because I realized that in the whole blogging world there appear to be two worlds when discussing PLM terminology. Oleg Shilovitsky, CEO@OpenBOM, claims that Digital Thread and Digital Twin topics are just fancy marketing terms. I was even more surprised to read his post: 3 Reasons Why You Should Avoid Using The Word “Model” In PLM. Read the comments and discussion in these posts (if LinkedIn allows you to navigate)

Oleg’s posts have for me most of the time, always something to discuss. I would be happier if other people with different backgrounds would participate in these discussions too – A “Like” is not a discussion. The risk in a virtual world is that it becomes a person-to-person debate, and we have seen the damage such debates can do for an entire community.

In the discussion we had related to Digital Thread and BOM, I realized that when we talk about traditional products, the BOM and the Digital Thread might be the same. This is how we historically released products to the market. Once produced, there were no more changes. In these situations, you could state a PLM-backbone based on BOM-structures/views, the EBOM, MBOM, and SBOM provide a Digital Thread.

The different interpretation comes when talking about products that contain software defining its behavior. Like a computer, the operating system can be updated on the fly; meanwhile, the mechanical system remains the same. To specify and certify the behavior of the computer, we cannot rely on the BOM anymore.

Having software in the BOM and revise the BOM every time there is a software change is a mission impossible. A mistake suggested ten years ago when we started to realize the different release cycles of hardware and software. Still, it is all about the traceability of all information related to a product along its whole lifecycle.

In a connected environment, we need to manage relationships between the BOM and relations to other artifacts. Managing these relations in a connected environment is what I would call the Digital Thread – a layer above PLM. While writing this post, I saw Matthias Ahrens’ post stating the same (click on the image to see the post)

When we discuss managing all the relations, we touch the domain of Configuration Management.  Martijn Dullaart/Martin Haket’s picture shares the same mindset – here, CM is the overlapping layer.

However, in their diagram, it is not a system picture; the different systems do not need to be connected. Configuration Management is the discipline that maintains the correct definition of every product – CM maintains the Thread. When it becomes connected, it is a Digital Thread.

As I have reached my 1500 words, I will not zoom in on the PLM and Model discussion – build your opinion yourself. We have to realize that the word Model always requires a context. Perhaps many of us coming from the traditional PDM/PLM world (managing CAD data) think about CAD models. As I studied physics before even touching CAD, I grew up with a different connotation

Lars Taxén’s comment in this discussion perhaps says it all (click on the image to read it). If you want to learn and discuss more about the Digital Thread and Models, register for the PLM Roadmap & PDT2020 event as many of the sessions are in this context (and not about 3D CAD).

Conclusion

I noticed I am getting tired of all the information streams crying for my attention and look forward to real social discussions, not broadcasted. Time to think differently requires such discussion, and feel free to contact me if you want to reflect on your thoughts. My next action will be a new series named Painting the future to stay motivated. (As we understand the past).

Translate

Email subscription to this blog

Categories

%d bloggers like this: