You are currently browsing the tag archive for the ‘PLM’ tag.

Due to some physical inconvenience the upcoming weeks, I will not be able to write a full blog post at this time. Typing with one finger is not productive.
A video post could be an alternative, however for me, the disadvantage of a video message is that it requires the audience to follow all the information in a fixed speed – no fast or selective reading possible – hard to archive and store in context of other information. Putting pieces of information in a relevant context is a PLM-mission.

So this time my post from December 2008, where I predicted the future for 2050. I think the predictions were not too bad – you will recognize some trends and challenges still ahead. Some newer comments in italic green. I am curious to learn what you think after reading this post. Enjoy, and I am looking forward to your feedback

PLM in 2050

As the year ends (December 2008), I decided to take my crystal ball to see what would happen with PLM in the future.

It felt like a virtual experience and this is what I saw:

  • Data is not replicated any more – every piece of information that exists will have a Unique Universal ID; some people might call it the UUID. In 2020 this initiative became mature, thanks to the merger of some big PLM and ERP vendors, who brought this initiative to reality. This initiative reduced the exchange costs in supply chains dramatically and lead to bankruptcy for many companies providing translators and exchange software. (still the dream of a digital enterprise)
  • Companies store their data in ‘the cloud’ based on the previous concept. Only some old-fashioned companies still have their own data storage and exchange issues, as they are afraid someone will touch their data. Analysts compare this behavior with the situation in the year 1950, when people kept their money under a mattress, not trusting banks (and they were not always wrong) (we are getting there – sill some years to go)
  • After 3D, an entire virtual world, based on holography, became the next step for product development and understanding of products. Thanks to the revolutionary quantum-3D technology, this concept could be even applied to life sciences. Before ordering a product, customers could first experience and describe their needs in a virtual environment (to be replaced by virtual twin / VR / AR)
  • Finally the cumbersome keyboard and mouse were replaced by voice and eye-recognition.
    Initially voice recognition (Siri, Alexia please come to the PLM domain)
    http://www.youtube.com/watch?v=2Y_Jp6PxsSQand eye tracking (some time to go still)

    were cumbersome. Information was captured by talking to the system and capturing eye-movement when analyzing holograms. This made the life of engineers so much easier, as while analyzing and talking, their knowledge was stored and tagged for reuse. No need for designers to send old-fashioned emails or type their design decisions for future reuse (now moving towards AI)

  • Due to the hologram technology, the world became greener. People did not need to travel around the world, and the standard became virtual meetings with global teams(airlines discontinued business class). Even holidays could be experienced in the virtual world thanks to a Dutch initiative based on the experience with coffee. (not sure why I selected this movie. Sorry ….)
    http://www.youtube.com/watch?v=HUqWaOi8lYQThe whole IT infrastructure was powered by efficient solar energy, reducing the amount of carbon dioxide dramatically
  • Then with a shock, I noticed PLM did not longer exist. Companies were focusing on their core business processes. Systems/terms like PLM, ERP, and CRM did not longer exist. Some older people still remembered the battle between these systems to own the data and the political discomfort this gave inside companies (so true …)
  • As people were working so efficient, there was no need to work all week. There were community time slots, when everyone was active, but 50 percent of the time, people had the time to recreate (to re-create or recreate was the question). Some older French and German designers remembered the days when they had only 10 weeks holiday per year, unimaginable nowadays. (the dream remains)

As we still have more than 40  years to reach this future, I wish you all a successful and excellent 2009.

I am looking forward to be part of the green future next year.

Advertisements

This time a post that has been on the table already for a long time – the importance of having established processes, in particular with implementing PLM.  By nature, most people hate processes as it might give the idea that their personal creativity is limited, where large organizations love processes as for them this is the way to guarantee a confident performance.  So let’s have a more in-depth look.

Where processes shine

In a transactional world, processes can be implemented like algorithms, assuming the data to be processed has the right quality. That is why MRP (Material Requirement Planning) and ERP (Enterprise Resource Planning) don’t have the mindset of personal creativity. It is about optimized execution driven by financial and quality goals.

When I started my career in the early days of data management, before it was called PDM/PLM, I learned that there is a need for communication-related to product data. Terms are revisions, and versions started to pop-up combined with change processes. Some companies began to talk about configuration management.

Companies were not thinking PLM along the whole lifecycle. It was more PDM for engineering and ERP for manufacturing. Where PDM was ultimate a document-control environment, ERP was the execution engine relying on documented content, but not necessarily connected. Unfortunate this is still the case at many companies, and it has to do with the mindset. Traditionally a company’s performance has been measured based on financial reporting coming from the ERP system. Engineering was an unmanageable cost in the eyes of the manufacturing company’s management and ERP-software vendors.

In de middle of the nineties (previous century now ! ), I had a meeting with an ERP-country manager to discuss a potential partnership. The challenge was that he had no clue about the value and complementary need for PLM. Even after discussing with him the differences between iterative product development (with revisioning) and linear execution (on the released product), his statement was:

“Engineers are just resources that do not want to be managed, but we will get them”

Meanwhile, I can say this company has changed its strategy, giving PLM a space in their portfolio combined with excellent slides about what could be possible.

To conclude, for linear execution the meaning of processes is more or less close to algorithms and when there is no algorithm, the individual steps in place are predictable with their own KPIs.

Process certification

As I mentioned in the introduction, processes were established to guarantee a predictable outcome, in particular when it comes to quality. For that reason, in the previous century when globalization started companies were somehow forced to get ISO 900x certified. The idea behind these certifications was that a company had processes in place to guarantee an expected outcome and for when they failed, they would have procedures in place to fix these gaps. The reason companies were doing this because no social internet could name and shame bad companies. Having ISO 900x certification would be the guarantee to deliver quality.  In the same perspective, we could see, configuration management, a system of best practices to guarantee that product information was always correct.

Certification was and is heaven for specialized external auditors and consultants.  To get certification you needed to invest in people and time to describe your processes, and once these processes were defined, there were regular external audits to ensure the quality system has been followed.  The beauty of this system – the described procedures were more or less “best intentions” not enforced. When the auditor would come the company had to play some theater that processes were followed., the auditor would find some improvements for next year and the management was happy certification was passed.

This has changed early this century. In particular, mid-market companies were no longer motivated to keep up this charade. The quality process manual remained as a source of inspiration, but external audits were no longer needed. Companies were globally connected and reviewed, so reputation could be sourced easily.

The result: there are documented quality procedures, and there is a reality. The more disconnected employees became in a company due to mergers or growth, the more individual best-practices became the way to deliver the right product and quality, combined with accepted errors and fixes downstream or later. The hidden cost of poor quality is still a secret within many companies.  Talking with employees they all have examples where their company lost a lot of money due to quality mistakes. Yet in less regulated industries, there is no standard approach, like CAPA (Corrective And Preventive Actions), APQP or 8D to solve it.

Configuration Management and Change Management processes

When it comes to managing the exact definition of a product, either an already manufactured product or products that are currently made, there is a need for Configuration Management.  Before there were PLM systems configuration management was done through procedures defining configurations based on references to documents with revisions and versions. In the aerospace industry, separate systems for configuration management were developed, to ensure the exact configuration of an aircraft could be retrieved at any time. Less regulated industries used a more document-based procedural approach as strict as possible. You can read about the history of configuration management and PLM in an earlier blog post: PLM and Configuration Management – a happy marriage?

With the introduction of PDM and PLM-systems, more and more companies wanted to implement their configuration management and in particular their change management inside the system, as the changes are always related to product information that can reside in a PLM-system. The change of part can be proposed (ECR), analyzed and approved, leading to and implementation of the change (ECO) which is based on changed specifications, designs (3D Models / Drawings) and more. You can read the basics here: The Issue and ECR/ECO for Dummies (Reprise)

The Challenge (= Problem) of Digital Processes

More and more companies are implementing change processes fully in PLM, and this is the point that creates the most friction for a PLM implementation. The beauty of digital change processes is that they can be full-proof. No change gets unnoticed as everyone is forced to follow the predefined procedures, either a type of fast track in case of lightweight (= low risk) changes or the full change process when the product is already in a mature state.

Like the ISO-900x processes, the PLM-implementer is often playing the role of the consultancy firm that needs to recommend the company how to implement configuration management and change processes. The challenge here is that the company most of the time does not have a standard view for their change processes and for sure the standard change management inside PLM s not identical to their processes.

Here the battle starts….

Management believes that digital change processes, preferable out-of-the-box, a crucial to implement, where users feel their job becomes more an administrative job than a creative job. Users that create information don’t want to be bothered with the decisions for numbering and revisioning.

They expect the system to do that easily for them – which does not happen as old procedures, responsibilities, and methodologies do not align with the system. Users are not measured or challenged for data quality, they are measured on the work they deliver that is needed now. Let’s first get the work done before we make sure all is consisted defined in the PLM-system.

Digital Transformation allows companies to redefine the responsibilities for users related to the data they produce. It is no longer a 3D Model or a drawing, but a complete data set with properties/attributes that can be shared and used for analysis and automation.

Conclusion

Implementing digital processes for PLM is the most painful, but required step for a successful implementation. As long as data and processes are not consistent, we can keep on dreaming about automation in PLM. Therefore, digital transformation inside PLM should focus on new methods and responsibilities to create a foundation for the future. Without an agreement on the digital processes there will be a growing inefficiency for the future.

 

In this post, I will explain the story behind my presentation at PI PLMx London. You can read my review of the event here: “The weekend after ……” and you can find my slides on SlideShare: HERE.

For me, this presentation is a conclusion of a thought process and collection of built-up experiences in the past three to  five years, related to the challenges digital transformation is creating for PLM and what makes it hard to go through compared to other enterprise business domains.  So here we go:

Digital transformation or disruption?

Slide 2 (top image) until 5 are dealing with the common challenges of business transformation. In nature, the transformation from a Caterpillar (old linear business) to a Butterfly (modern, agile, flexible) has the cocoon stage, where the transformation happens. In business unfortunate companies cannot afford a cocoon phase, it needs to be a parallel change.

Human beings are not good at change (slide 3 & 4), and the risk is that a new technology or a new business model will disrupt your business if you are too confident – see examples from the past. The disruption theory introduced by Clayton Christensen in his book, the Innovators Dilemma is an excellent example of how this can happen.  Some of my thoughts are in The Innovator’s dilemma and generation change (2015)

Although I know some PLM vendors consider themselves as disruptor, I give them no chance in the PLM domain. The main reason: The existing PLM systems are so closely tied to the data they manage, that switching from one PLM system to a more modern PLM system does not pay off.  The data models are so diverse that it is better to stay with the existing environment.

What is clear for modern digital businesses is that if you could start from scratch or with almost no legacy you can move faster forward than the rest. But only if supported by a strong leadership , a(understandable) vision and relentless execution.

The impression of evolution

Marc Halpern’s slide presented at PDT 2015 is one of my favorite slides, as it maps business maturity to various characteristics of an organization, including the technologies used.

 

Slide 7 till 18 are zooming in on the terms Coordinated and Connected and the implications it has for data, people and business. I have written about Coordinated and Connected recently: Coordinated or Connected (2018)

A coordinated approach: Delivering the right information at the right moment in the proper context is what current PLM implementations try to achieve. Allowing people to use their own tools/systems as long as they deliver at the right moment their information (documents/files) as part of the lifecycle/delivery process. Very linear and not too complicated to implement you would expect. However it is difficult ! Here we already see the challenge of just aligning a company to implement a horizontal flow of data. Usability of the PLM backbone and optimized silo thinking are the main inhibitors.

In a connected approach: Providing actual information for anyone connected in any context the slide on the left shows the mental picture we need to have for a digital enterprise. Information coming from various platforms needs to be shareable and connected in real-time, leading, in particular for PLM, to a switch from document-based deliverables to models and parameters that are connected.

Slide 15 has examples of some models.  A data-driven approach creates different responsibilities as it is not about ownership anymore but about accountability.

The image above gives my PLM-twisted vision of which are the five core platforms for an enterprise.  The number FIVE is interesting as David Sherburne just published his Five Platforms that Enable Digital Transformation and in 2016 Gartner identified Five domains for the digital platform .- more IT-twisted ? But remember the purpose of digital transformation is: FIVE!

From Coordinated to Connected is Digital Transformation

Slide 19 till 27 further elaborate on the fact that for PLM there is no evolutionary approach possible, going from a Coordinated technology towards a Connected technology.

For three reasons:  different type of data (document vs. database elements), different people (working in a connected environment requires modern digital skills) and different processes (the standard methods for mechanical-oriented PLM practices do not match processes needed to deliver systems (hardware & software) with an incremental delivery process).

Due to the incompatibility of the data, more and more companies discover that a single PLM-instance cannot support both modes – staying with your existing document-oriented PLM-system does not give the capabilities needed for a model-driven approach. Migrating the data from a traditional PLM-environment towards a modern data-driven environment does not bring any value. The majority of the coordinated data is not complete and with the right quality to use a data-driven environment. Note: in  a data-driven environment you do not have people interpreting the data – the data should be correct for automation / algorithms.

The overlay approach, mentioned several times in various PLM-blogs, is an intermediate solution. It provides traceability and visibility between different data sources (PLM, ALM, ERP, SCM, …). However it does not make the information in these systems better accessible.

So the ultimate conclusion is: You need both approaches, and you need to learn to work in a hybrid environment !

What can various stakeholders do?

For the management of your company, it is crucial they understand the full impact of digital transformation. It is not about a sexy customer website, a service platform or Virtual Reality/Augmented Reality case for the shop floor or services. When these capabilities are created disconnected from the source (PLM), they will deliver inconsistencies in the long-term. The new digital baby becomes another silo in the organization. Real digital transformation comes from an end-to-end vision and implementation.  The result of this end-to-end vision will be the understanding that there is a duality in data, in particular for the PLM domain.

Besides the technicalities, when going through a digital transformation, it is crucial for the management to share their vision in a way it becomes a motivational story, a myth, for all employees. As Yuval Harari, writer of the book Sapiens,  suggested, we (Home Sapiens) need an abstract story, a myth to align a larger group of people to achieve a common abstract goal. I discussed this topic in my posts: PLM as a myth? (2017)  and PLM – measurable or a myth?

Finally, the beauty of new digital businesses is that they are connected and can be monitored in real-time. That implies you can check the results continuously and adjust – scale of fail!

Consultants and strategists in a company should also take the responsibility, to educate the management and when advising on less transformational steps, like efficiency improvements: Make sure you learn and understand model-based approaches and push for data governance initiatives. This will at least narrow the gap between coordinated and connected environments.

This was about strategy – now about execution:

For PLM vendors and implementers, understanding the incompatibility of data between current PLM practices – coordinated and connected – it will lead to different business models. Where traditionally the new PLM vendor started first with a rip-and-replace of the earlier environment – no added value – now it is about starting a new parallel environment.  This implies no more big replacement deals, but more a long-term. strategic and parallel journey.  For PLM vendors it is crucial that being able to offer to these modes in parallel will allow them to keep up their customer base and grow. If they would choose for coordinated or connected only it is for sure a competitor will work in parallel.

For PLM users, an organization should understand that they are the most valuable resources, realizing these people cannot make a drastic change in their behavior. People will adapt within their capabilities but do not expect a person who grew up in the traditional ways of working (linear / analogue) to become a successful worker in the new mode (agile / digital). Their value lies in transferring their skills and coaching new employees but do not let them work in two modes. And when it comes to education: permanent education is crucial and should be scheduled – it is not about one or two trainings per year – if the perfect training would exist, why do students go to school for several years ? Why not give them the perfect PowerPoint twice a year?

Conclusions

I believe after three years of blogging about this theme I have made my point. Let’s observe and learn from what is happening in the field – I remain curious and focused about proof points and new insights. This year I hope to share with you new ideas related to digital practices in all industries, of course all associated with the human side of what we once started to call PLM.

Note: Oleg Shilovitsky just published an interesting post this weekend: Why complexity is killing PLM and what are future trajectories and opportunities? Enough food for discussion. One point: The fact that consumers want simplicity does not mean PLM will become simple – working in the context of other information is the challenge – it is human behavior – team players are good in anticipating – big egos are not. To be continued…….

 

 

 

 

 

 

 

 

 

Some of you following my blog this year might not feel so connected with the content I have written many posts related to digitization and the future needs for model-driven approaches, not so much about topics that might keep you awake at this time.

When I look in my blog statistics, the most popular post is ECO/ECR for Dummies, leading with more than 30.000 views since I wrote this post in 2010. You can read the original post here: ECR/ECO for Dummies (2010)

Meanwhile, in most companies, the scope of PLM has broadened, and instead of a change process within the engineering department, it will be part of enterprise change management, connecting all options for change. Therefore, in this post, I will explain the basics of a modern enterprise change process.

It can start with an Issue

Already 10 years ago I was promoting the Issue-object in a PLM data model as this could be the starting point for many activities in the enterprise, product-related, technology-related, customer-related and more.

My definition of an Issue is that it is something happening that was not expected and requires follow-up. In our day-to-day life, we solve many issues by sending an e-mail or picking up the phone, and someone down the chain will resolve the issue (or make it disappear).

The disadvantage of this approach is that there is no collective learning for the organization. Imagine that you could see in your PLM-system how many issues there were with a project, can you learn from that and improve it for the future. Or when you notice you have had several costly issues during manufacturing, but you were never aware of them, because it happened in another country and it was solved there.

By creating issues in the PLM-system related to the object(s), it concerns (a product, a part, a customer, a manufacturing process, an installation, …..) you will create traceability and visibility based on global facts. By classifying the issues, you can run real-time reports on what is happening and what has happened unforeseen in your enterprise.

The challenge is to find a user-interface that can compete with e-mail as an entry point. So far PLM-system providers haven’t invested in highly user-friendly Issue management, leaving the email path possible. PLM Vendors – there is work to do!

Next, depending on the Issue various follow-up processes can start en some of them will be connected. See the diagram below and forgive me my graphical talent.

In this post we will focus only on the ECR and ECO path, leaving the other processes above open for next time.

The Engineering Change Request-process

The term ECR, meaning Engineering Change Request, might not be correct anymore for requested changes in an enterprise. Therefore, sometimes, you might also see the term CR only, without the reference to Engineering. For example, in the software world, you will not follow the same process as used for the hardware world, due to the different lifecycle, speed, and cost involved with software changes.  I will focus only on the ECR here.

As the picture above shows, there are two entry points for an engineering change request. Either someone in the enterprise has an issue that leads to an ECR, or someone in the enterprise has an idea to improve the products and sends it in as a request.

The next steps are quite standard for a typical ECR-process:

Analysis

In the Analysis step assigned individuals will evaluate the request. If it is well understood. Potential solution paths will be evaluated and rated. In case it is a change on a running product, what is the impact of performing this change on current products, current, and future manufacturing, finance, etc. In the analysis-phase there will be no detail design, it is more a feasibility study. In companies already having a well-structured PLM and ERP infrastructure, many of the impact analysis can be done rather fast, as for example the “Where Used” capability is a standard in every PLM-system.

CCB

The abbreviation stands for Change Control Board, a term also used in the software industry. In the case of hardware products, the CCB usually consists of engineering, manufacturing, purchasing, finance and potentially sales, based on the context of the ECR. This group of people decides what will be the next step of the ECR. They have four options:

  1. Ask for further analysis – a decision is not possible.
  2. Mandate the proposed change to be planned immediately by promoting it to an Engineering Change Order, which means the change is going to be executed as needed (Immediate for example in case of a product stop/customer issue – Longer Term when old stock needs to be consumed first)
  3. The proposed change can become a Candidate for the next product release/upgrade and put on hold to be implemented together with other candidates for a release.
  4. The ECR can also be Cancelled meaning the proposed change will potential not create business benefits for the company. Implementing the change might create more complexity as desired.

Engineering Change Order

The image above is an illustration of a possible flow for an ECO. When an ECO is launched a first analysis and planning is required. The ECO can be based on multiple ECRs, or the ECO can be depending on other ECO’s that need to be coordinated.

The ECO process is quite similar to a release process. There will be multidisciplinary collaboration (mechanical/electrical/ …) leading to a complete engineering definition (based on the EBOM). Next Manufacturing Preparation and Planning can be done, where the implementation at the manufacturing plant(s) will be depending on the ECO context.

Note: When only a change in manufacturing will be implemented, for example when certain parts/materials are not available or affordable, we do not name it an ECO but an MCO instead. MCO stands for Manufacturing Change Order and assumes the engineering specification will remain the same.

Conclusion

The ECR/ECO-process is slowly changing due to digitization and a broader implementation scope for PLM – it is no longer a mechanical engineering change process. The availability of digital connected information will offer a base for algorithms in the future, speeding up the process and reducing the effort for a CCB during the ECR-process.

Will these processes still be there in 2025?

 

 

 

According to LinkedIn, there are over a 7500 PLM consultants in my network.  It is quite an elite group of people as I have over 100.000 CEOs in my network according to LinkedIn. Being a CEO is a commodity.

PLM consultants share a common definition, the words Product Lifecycle Management. However, what we all mean by PLM is one of the topics that has evolved over the past 19 years in a significant way.

PLM or cPDM (collaborative PDM)?

In the early days, PLM was considered as an engineering tool for collaboration, either between global subsidiaries or suppliers. The main focus of PLM was to bring engineering information to manufacturing in a controlled way. PLM and cPDM, often seen as solving the same business needs as the implementation of a PLM system most of the time got stuck at the cPDM level.

Main players at that time were Dassault Systemes, UGS (later Siemens PLM) and PTC – their solutions were MCAD-driven with limited scope – bringing engineering information towards manufacturing in a coordinated way.

PLM was not really an approach that created visibility at the management level of a company. How do you value and measure collaboration? Because connectivity was expensive in the early days of PLM, combined with the idea that PLM systems needed to be customized, PLM was framed as costly and hard to deliver value.

Systems Engineering and New Product Introduction

Then, 2005 and beyond, thanks to better connectivity and newcomers in the PLM market, the solution landscape from PLM became broader.  CAD integrations were not a necessary part of the PLM scope according to these newcomers as they focused on governance (New Product Introduction), Bill of Materials or at the front-end of the product design cycle, connecting systems engineering by adding requirements management to their PLM suite.

New players in this domain where SAP, Aras, followed by Autodesk – their focus was more metadata-driven, connection and creating an end-to-end data flow for the product. Autodesk started the PLM and cloud path.

These new capabilities brought a broader scope for PLM indeed. However, they also strengthened the idea that PLM is there for engineers. For the management too complicated, unless they understood the value of coordinated collaboration. Large enterprises saw the benefits of having common processes for PLM as an essential reason to invest in PLM. The graph below showed the potential of PLM, where the shaded area indicates the potential revenue benefits.

Still, this graph does not create “hard numbers,” and it requires visionaries to get a PLM implementation explained and justified across the board.  PLM is framed as expensive even if the budgets spent on PLM are twenty percent or less compared to ERP implementations. As PLM is not about transactional data, the effects of PLM are hard to benchmark. Success has many fathers, and in case of difficulties, the newcomer is to blame.

PLM = IoT?

With the future possibilities, connectivity to the machine-level (IoT or IIoT), a new paradigm related to PLM was created by PTC.  PLM equals IoT – read more here.

Through IoT, it became possible to connect to products/assets in the field, and the simplified message from PTC was that now thanks to IoT (read ThingWorx) PLM was now really possible, releasing traditional PLM out of its engineering boundaries. The connected sensors created the possibility to build and implement more advanced and flexible manufacturing processes, often called Smart Manufacturing or Industrie 4.0.

None of the traditional PLM vendors is talking about PLM solely anymore. Digital transformation is a topic discussed at the board level, where GE played a visionary role with their strong message for change, driven by their CEO Jeff Immelt at that time – have a look at one of his energizing talks here.

However is PLM part of this discussion?

Digital Transformation opened a new world for everyone. Existing product lifecycle concepts could be changed, products are becoming systems, interacting with the environment realized through software features. Systems can be updated/upgraded relatively fast, in particular when you are able to watch and analyze the performance of your assets in almost real-time.

All consultants (me included) like to talk about digital transformation as it creates a positive mood towards the future, imagining everything that is possible. And with the elite of PLM consultants we are discovering the new roles of PLM – see picture below:

Is PLM equal to IoT or Digital Transformation?

I firmly believe the whole Digital Transformation and IoT hypes are unfortunately obfuscating the maximum needs for a digital enterprise. The IoT focus only exposes the last part of the lifecycle, disconnected from the concept and engineering cycles – yes on PowerPoint slides there might be a link. Re-framing PLM as Digital Transformation makes is even vaguer as we discussed during the CIMdata / PDT Europe conference last October. My main argument: Companies fail to have a link with their digital operations and dreams because current engineering processes and data, hardware (mechanical and electronics) combined with software are still operating in an analog, document-driven mode.

PLM = MBSE?

However what we also discussed during this conference was the fact that actually there is a need for an end-to-end model-based systems engineering infrastructure to support the full product lifecycle. Don Farr’s (Boeing) new way to depict the classical systems engineering “V” also hinted into that direction. See the image below – a connected environment between the virtual modeled word and the physical world at any time of the product lifecycle

So could MBSE be the new naming for PLM?

The problem is as Peter Bilello also mentioned during the CIMdata/PDT conference is that the word “ENGINEERING” is in Model-Based Systems Engineering. Therefore keeping the work what the PLM “elite” is doing again in the engineering box.

So perhaps Model-Based Enterprise as the new name?

Unfortunate MBE has already two current definitions – look here and here. Already too much confusion, and there a lot of people who like confusion. See Model-Based – The confusion. So any abbreviation with Model-Based terminology in it will not get attention at the board level. Even if it is crucial the words, Model-Based create less excitement as compared to Digital Twin, although the Digital Twin depends on a model-based approach.

Conclusion

Creating and maintaining unique products and experiences for their customers is the primary target of almost every company. However, no easy acronym that frames these aspects to value at the board level. Perhaps PID – the Product Innovation Diamond approach will be noticed? Your say ….

 

This is my concluding post related to the various aspects of the model-driven enterprise. We went through Model-Based Systems Engineering (MBSE) where the focus was on using models (functional / logical / physical / simulations) to define complex product (systems). Next we discussed Model Based Definition / Model-Based Enterprise (MBD/MBE), where the focus was on data continuity between engineering and manufacturing by using the 3D Model as a master for design, manufacturing and eventually service information.

And last time we looked at the Digital Twin from its operational side, where the Digital Twin was applied for collecting and tuning physical assets in operation, which is not a typical PLM domain to my opinion.

Now we will focus on two areas where the Digital Twin touches aspects of PLM – the most challenging one and the most over-hyped areas I believe. These two areas are:

  • The Digital Twin used to virtually define and optimize a new product/system or even a system of systems. For example, defining a new production line.
  • The Digital Twin used to be the virtual replica of an asset in operation. For example, a turbine or engine.

Digital Twin to define a new Product/System

There might be some conceptual overlap if you compare the MBSE approach and the Digital Twin concept to define a new product or system to deliver. For me the differentiation would be that MBSE is used to master and define a complex system from the R&D point of view – unknown solution concepts – use hardware or software?  Unknown constraints to be refined and optimized in an iterative manner.

In the Digital Twin concept, it is more about a defining a system that should work in the field. How to combine various systems into a working solution and each of the systems has already a pre-defined set of behavioral / operational parameters, which could be 3D related but also performance related.

You would define and analyze the new solution virtual to discover the ideal solution for performance, costs, feasibility and maintenance. Working in the context of a virtual model might take more time than traditional ways of working, however once the models are in place analyzing the solution and optimizing it takes hours instead of weeks, assuming the virtual model is based on a digital thread, not a sequential process of creating and passing documents/files. Virtual solutions allow a company to optimize the solution upfront instead of costly fixing during delivery, commissioning and maintenance.

Why aren’t we doing this already? It takes more skilled engineers instead of cheaper fixers downstream. The fact that we are used to fixing it later is also an inhibitor for change. Management needs to trust and understand the economic value instead of trying to reduce the number of engineers as they are expensive and hard to plan.

In the construction industry, companies are discovering the power of BIM (Building Information Model) , introduced to enhance the efficiency and productivity of all stakeholders involved. Massive benefits can be achieved if the construction of the building and its future behavior and maintenance can be optimized virtually compared to fixing it in an expensive way in reality when issues pop up.

The same concept applies to process plants or manufacturing plants where you could virtually run the (manufacturing) process. If the design is done with all the behavior defined (hardware-in-the-loop simulation and software-in-the-loop) a solution has been virtually tested and rapidly delivered with no late discoveries and costly fixes.

Of course it requires new ways of working. Working with digital connected models is not what engineering learn during their education time – we have just started this journey. Therefore organizations should explore on a smaller scale how to create a full Digital Twin based on connected data – this is the ultimate base for the next purpose.

Digital Twin to match a product/system in the field

When you are after the topic of a Digital Twin through the materials provided by the various software vendors, you see all kinds of previews what is possible. Augmented Reality, Virtual Reality and more. All these presentations show that clicking somewhere in a 3D Model Space relevant information pops-up. Where does this relevant information come from?

Most of the time information is re-entered in a new environment, sometimes derived from CAD but all the metadata comes from people collecting and validating data. Not the type of work we promote for a modern digital enterprise. These inefficiencies are good for learning and demos but in a final stage a company cannot afford silos where data is collected and entered again disconnected from the source.

The main problem: Legacy PLM information is stored in documents (drawings / excels) and not intended to be shared downstream with full quality.
Read also: Why PLM is the forgotten domain in digital transformation.

If a company has already implemented an end-to-end Digital Twin to deliver the solution as described in the previous section, we can understand the data has been entered somewhere during the design and delivery process and thanks to a digital continuity it is there.

How many companies have done this already? For sure not the companies that are already a long time in business as their current silos and legacy processes do not cater for digital continuity. By appointing a Chief Digital Officer, the journey might start, the biggest risk the Chief Digital Officer will be running another silo in the organization.

So where does PLM support the concept of the Digital Twin operating in the field?

For me, the IoT part of the Digital Twin is not the core of a PLM. Defining the right sensors, controls and software are the first areas where IoT is used to define the measurable/controllable behavior of a Digital Twin. This topic has been discussed in the previous section.

The second part where PLM gets involved is twofold:

  • Processing data from an individual twin
  • Processing data from a collection of similar twins

Processing data from an individual twin

Data collected from an individual twin or collection of twins can be analyzed to extract or discover failure opportunities. An R&D organization is interested in learning what is happening in the field with their products. These analyses lead to better and more competitive solutions.

Predictive maintenance is not necessarily a part of that.  When you know that certain parts will fail between 10.000 and 20.000 operating hours, you want to optimize the moment of providing service to reduce downtime of the process and you do not want to replace parts way too early.


The R&D part related to predictive maintenance could be that R&D develops sensors inside this serviceable part that signal the need for maintenance in a much smaller time from – maintenance needed within 100 hours instead of a bandwidth of 10.000 hours. Or R&D could develop new parts that need less service and guarantee a longer up-time.

For an R&D department the information from an individual Digital Twin might be only relevant if the Physical Twin is complex to repair and downtime for each individual too high. Imagine a jet engine, a turbine in a power plant or similar. Here a Digital Twin will allow service and R&D to prepare maintenance and simulate and optimize the actions for the physical world before.

The five potential platforms of a digital enterprise

The second part where R&D will be interested in, is in the behavior of similar products/systems in the field combined with their environmental conditions. In this way, R&D can discover improvement points for the whole range and give incremental innovation. The challenge for this R&D organization is to find a logical placeholder in their PLM environment to collect commonalities related to the individual modules or components. This is not an ERP or MES domain.

Concepts of a logical product structure are already known in the oil & gas, process or nuclear industry and in 2017 I wrote about PLM for Owners/Operators mentioning Bjorn Fidjeland has always been active in this domain, you can find his concepts at plmPartner here  or as an eLearning course at SharePLM.

To conclude:

  • This post is way too long (sorry)
  • PLM is not dead – it evolves into one of the crucial platforms for the future – The Product Innovation Platform
  • Current BOM-centric approach within PLM is blocking progress to a full digital thread

More to come after the holidays (a European habit) with additional topics related to the digital enterprise

 

I was planning to complete the model-based series with a post related to the digital twin. However, I did not find the time to structure my thoughts to write it up in a structured story. Therefore, this time some topics I am working on that I would like to share.

Executive days at CADCAM Group

Last week I supported the executive days organized by the CADCAM Group in Ljubljana and Zagreb. The CADCAM is a large PLM Solution and Services Provider (60+ employees) in the region of South-East Europe with offices in Croatia, Slovenia, Serbia and Bosnia and Herzegovina. They are operating in a challenging region, four relative young countries with historically more an inside focus than a global focus. Many of CADCAM Group customers are in the automotive supply chain and to stay significant for the future they need to understand and develop a strategy that will help them to move forward.

My presentation was related to the learning path each company has to go through to understand the power of digital combined with the observation that current and future ways of working are not compatible therefore requiring a scaled and bimodal approach (see also PDT Europe further down this post).

This presentation matched nicely with Oscar Torres’s presentation related to strategy. You need to decide on the new things you are going to do, what to keep and what to stop. Sounds easy and of course the challenge is to define the what to start, stop and keep. There you need good insights into your current and future business.

Pierre Aumont completed the inspiring session by explaining how the automotive industry is being disrupted and it is not only Tesla. So many other companies are challenging the current status quo for the big automotive OEMs. Croatia has their innovator for electrical vehicles too, i.e. Rimac. Have a look here.

The presentations were followed by a (long) panel discussion. The common theme in both discussions is that companies need to educate and organize themselves to become educated for the future. New technologies, new ways of working need time and resources which small and medium enterprises often do not have. Therefore, universities, governments and interest groups are crucial.

A real challenge for countries that do not have an industrial innovation culture (yet).

CADCAM Group as a catalyst for these countries understands this need by organizing these executive days. Now the challenge is after these inspiring days to find the people and energy to follow-up.

Note: CADCAM Group graciously covered my expenses associated with my participation in these events but did not in any way influence the content of this paragraph.

 

The MBD/MBE discussion

In my earlier post, Model-Based: Connecting Engineering and Manufacturing,  I went deeper into the MBD/MBE topic and its potential benefits, closing with the request to readers to add their experiences and/or comments to MBD/MBE. Luckily there was one comment from Paul van der Ree, who had challenging experiences with MBD in the Netherlands. Together with Paul and a MBD-advocate (to be named) I will try to have discussion analyzing pro’s and con’s from all viewpoints and hopefully come to a common conclusion.

This to avoid that proponents and opponents of MBD just repeat their viewpoints without trying to converge. Joe Brouwer is famous for his opposition to MBD. Is he right or is he wrong I cannot say as there has never been a discussion. Click on the above image to see Joe’s latest post yourself. I plan to come back with a blog post related to the pro’s and con’s

 

The Death of PLM Consultancy

Early this year Oleg Shilovitsky and I had a blog debate related to the “Death of PLM Consultancy”. The discussion started here: The Death of PLM Consultancy ? and a follow-up post was PLM Consultants are still alive and have an exit strategy. It could have been an ongoing blog discussion for month where the value would be to get response from readers from our blogs.

Therefore I was very happy that MarketKey, the organizers behind the PLMx conferences in Europe and the US, agreed on a recorded discussion session during PLMx 2018 in Hamburg.  Paul Empringham was the moderator of this discussion with approx. 10 – 12 participants in the room to join the discussion. You can view the discussion here through this link: PLMx Hamburg debate

I want to thank MarketKey for their support and look forward to participating in their upcoming PLMx European event and if you cannot wait till next year, there is the upcoming PLMx conference in North America on November 5th and 6th – click on the image on the left to see the details.

 

 

PDT Europe call for papers

As you might have noticed I am a big supporter of the joint CIMdata/PDT Europe conference. This year the conference will be in Stuttgart on October 24th (PLM Roadmap) and October 25th (PDT).

I believe that this conference has a more “geeky” audience and goes into topics of PLM that require a good base understanding of what’s happening in the field. Not a conference for a newcomer in the world of PLM, more a conference for an experienced PLM person (inside a company or from the outside) that has experience challenging topics, like changing business processes, deciding on new standards, how to move to a modern digital business platform.

It was at these events where concepts as Model-Based were discussed in-depth, the need for Master Data Management, Industry standards for data exchange and two years ago the bimodal approach, also valid for PLM.

I hope to elaborate on experiences related to this bimodal or phased approach during the conference. If you or your company wants to contribute to this conference, please let the program committee know. There is already a good set of content planned. However, one or two inspiring presentations from the field are always welcome.
Click on this link to apply for your contribution

Conclusion

There is a lot on-going related to PLM as you can see. As I mentioned in the first topic it is about education and engagement. Be engaged and I am looking forward to your response and contribution in one or more of the topics discussed.

In my earlier post; PLM 2018 my focus, your input, I invited you to send PLM related questions that would spark of a dialogue. As by coincidence Oleg Shilovitsky wrote a post with the catchy title: Why traditional PLM ranking is dead. PLM ranking 2.0. Read this post and the comments if you want to follow this dialogue.

Oleg reacts in this post on the discussion that had started around the Forester Wave ranking PLM Vendors, which on its own is a challenging topic. I know from my experience that these rankings depend very much on a mix of functions and features, but also are profoundly influenced by the slideware and marketing power of these PLM Vendors. Oleg also quotes Joe Barkai’s post: ranking PLM Vendors to illustrate that this kind of ranking does not bring a lot of value as there is so much commonality between these systems.

I agree with Oleg and Joe. PLM ranking does not make sense for companies to select a PLM solution. They are more an internal PLM show, useful for the organizing consultancy companies to conduct, but at the end, it is a discussion about who has the biggest and most effective button. Companies need to sell themselves and differentiate.

Do we need consultancy?

We started a dialogue on the comments of Oleg’s blog post where I mentioned that PLM is not about selecting a solution from a vendor, there are many other facets related to a PLM implementation. First of all, the industry your company is active in. No solution fits all industries.

But before selecting a solution, you first need to understand what does a company want to achieve in the future. What is the business strategy and how can PLM support this business strategy?

In most cases, a strategy is future-oriented and not about consolidating the current status quo. Therefore I believe a PLM implementation is always done in the context of a business transformation, which is most of the time not only related to PLM – it is about People, Processes and then the tools.

Oleg suggests that this complexity is created by the consulting business, as he writes:

Complex business and product strategies are good for consulting business you do. High level of complexity with high risk of failure for expensive PLM projects is a perfect business environment to sell consulting. First create complexity and then hire consulting people to explain how to organize processes and build business and product strategy. Win-win

Enterprise and engineering IT are hiring consulting to cover their decision process. That was a great point made by Joe Barkai- companies are buying roadmaps and long-term commitments, but rarely technologies. Technologies can be developed, and if even something is missed, you can always acquire independent vendors or technology later – it was done many times by many large ISVs in the past.

Here I agree with a part of the comments. If you hire consultancy firms just for the decision process, it does not make sense/ The decision process needs to be owned by the company. Do not let a consultancy company prescribe your (PLM) strategy as there might be mixed interests. However, when it comes to technologies, they are derived from the people and process needs.

So when I write in the comment:

We will not change the current status quo and ranking processes very soon. Technology is an enabler, but you need a top-down push to work different (at least for those organizations that read vendor rankings).

Oleg states:

However, the favorite part of your comments is this – “We will not change the current status quo and ranking processes very soon.” Who are “we”???? Management consulting people?

With “we” I do not mean the consulting people. In general, the management of companies is more conservative than consultants are. It is our human brain that is change averse and pushes people to stay in a kind of mainstream mode. In that context, the McKinsey article: How biases, politics, and egos derail business decisions is a fascinating read about company dynamics. Also, CIMdata published in the past a slide illustrating the gap between vision, real capabilities and where companies really are aiming at.

There is such a big gap between where companies are and what it possible. Software vendors describe the ideal world but do not have a migration path. One of the uncomfortable discussions is when discussing a cloud solution is not necessary security (topic #1) but what is your exit strategy? Have you ever thought about your data in a cloud solution and the vendor raises prices or does no longer have a viable business model. These are discussions that need to take place too.

Oleg also quotes a CIMdata cloud PLM research how companies are looking for solutions as they are “empowered” by the digital world. Oleg states:

In a digital world, companies are checking websites, technologies, watching YouTube and tried products available online. Recent cloud PLM research published by CIMdata tells that when companies are thinking about cloud PLM, the first check they do is independent software providers recommendations and websites (not business process consultants).

I am wondering the value of this graph. The first choice is independent software recommendations/websites.  Have you ever seen independent software recommendations?

Yes, when it comes to consumer tools. “I like software A because it gives me the freedom what to do” or “Software B has so many features for such a low price – great price/value ratio.”

These are the kind of reviews you find on the internet for consumers. Don’t try to find answers on a vendor website as there you will get no details, only the marketing messages.

I understand that software vendors, including Oleg’s company OpenBOM, needs to differentiate by explaining that the others are too complex. It is the same message you hear from all the relative PLM newcomers, Aras, Autodesk, …….

All these newcomers provide marketing stories and claim successes because of their tools, where reality is the tool is secondary to the success. First, you need the company to have a vision and a culture that matches this tool. Look at an old Gartner picture (the hockey stick projection) when all is aligned. The impact of the tool is minimal.

Conclusion

Despite democratization of information, PLM transformations will still need consultants or a well-educated workforce inside your company. Consultants have the advantage of collected experience, which often is not the case when you work inside a company. We should all agree that at the end it is about the business first (human beings are complex) and then the tools (here you can shop on the internet what matches the vision)

Although this post seems like ping-pong match of arguments, I challenge you to take part of this discussion. Tell us where you agree or disagree combined with argumentation as we should realize the argumentation is the most valuable point.
Your thoughts?

Happy New Year to all of you. A new year comes traditionally with good intentions for the upcoming year.  I would like to share my PLM intentions for this year with you and look forward to your opinion. I shared some of my 2017 thoughts in my earlier post: Time for a Break. This year will I focus on the future of PLM in a digital enterprise, current PLM practices and how to be ready for the future.

Related to these activities I will zoom in on people-related topics, like organizational change, business impact and PLM justification in an enterprise. When it happens during the year, or based on your demands, I will zoom in on architectural stuff and best practices.

The future of PLM

Accenture – Digital PLM

At this moment digital transformation is on the top of the hype curve and the impact varies of course per industry. For sure at the company’s C-level managers will be convinced they have the right vision and the company is on the path to success.

Statements like: “We will be the first digital industrial enterprise” or “We are now a software company” impress the outside world and often investors in the beginning.

 

Combined with investments in customer related software platforms a new digital world is relative fast created facing the outside world.  And small pilots are celebrated as significant successes.

What we do not see is that to show and reap the benefits of digital transformation companies need to do more than create a modern, outside facing infrastructure. We need to be able to connect and improve the internal data flow in an efficient way to stay competitive. Buzzwords like digital thread and digital twin are relevant here.

To my understanding we are still in the early phases of discovering the ideal architecture and practices for a digital enterprise. PLM Vendors and technology companies show us the impressive potential as-if the future already exists already now. Have a reality check from Marc Halpern (Gartner) in this article on engineering.com – Digital Twins: Beware of Naive Faith in Simplicity.

I will focus this year on future PLM combined with reality, hopefully with your support for real cases.

Current PLM practices

Although my curiosity is focused on future PLM, there is still a journey to go for companies that have just started with PLM.  Before even thinking of a digital enterprise, there is first a need to understand and implement PLM as an infrastructure outside the engineering department.

Many existing PLM implementations are actually more (complex) document management systems supporting engineering data, instead of using all available capabilities of a modern PLM systems. Topics like Systems Engineering, multidisciplinary collaboration, Model-Based Enterprise, EBOM-MBOM handling, non-intelligent numbering are all relevant for current and future PLM.

Not exploring and understanding them in your current business will make the gap towards the future even bigger. Therefore, keep on sending your questions and when time allows I will elaborate. For example, see last year’s PLM dialogue – you find these posts here: PLM dialogue and PLM dialogue (continued). Of course I will share my observations in this domain too when I bump into them.

 

To be ready for the future

The most prominent challenge for most companies however is how to transform their existing business towards a modern digital business where new processes and business opportunities need to be implemented inside an existing enterprise. These new processes and business opportunities are not just simple extensions of the current activities, they need new ways of working like delivering incremental results through agile and multidisciplinary teams. And these ways of working combined with never-existing-before interactivity with the market and the customer.

How to convince management that these changes are needed and do not happen without their firm support? It is easier to do nothing and push for small incremental changes. But will this be fast enough? Probably not as you can read from research done by strategic consultancy firms. There is a lot of valuable information available if you invest time in research. But spending time is a challenge for management.

I hope to focus on these challenges too, as all my clients are facing these challenges. Will I be able to help them? I will share successes and pitfalls with you, combined supporting information that might be relevant for others

Your input?

A blog is a modern way of communicating with anyone connected in the world. What I would like to achieve this year is to be more interactive. Share your questions – there are no stupid questions as we are all learning. By sharing and learning we should be able to make achievable steps and become PLM winners.

Best wishes to us all and be a winner not a tweeter …..

 

 

When I started working with SmarTeam Corp.  in 1999, the company had several product managers, who were responsible for the whole lifecycle of a component or technology. The Product Manager was the person to define the features for the new release and provide the justification for these new features internally inside R&D.  In addition the Product Manager had the external role to visit customers and understand their needs for future releases and building and explaining a coherent vision to the outside and internal world. The product manager had a central role, connecting all stakeholders.

In the ideal situation the Product Manager was THE person who could speak in R&D-language about the implementation of features, could talk with marketing and documentation teams to explain the value and expected behavior and could talk with the customer describing the vision, meanwhile verifying the product’s vision and roadmap based on their inputs.All these expected skills make the role of a product manager challenging. Is the person too “techy” than he/she will enjoy working with R&D but have a hard time understanding customer demands. From the other side if the Product Manager is excellent in picking-up customer and market feedback he/she might not be heard and get the expected priorities from R&D. For me, it has always been clear that in software world a “bi-directional” Product Manager is crucial to success.

Where are the Product Managers in the Manufacturing Industry?

Approximate four years ago new concepts related to digitalization for PLM became more evident. How could a digital continuity connect the various disciplines around the product lifecycle and therefore provide end-to-end visibility and traceability? When speaking of end-to-end visibility most of the time companies talked about the way they designed and delivered products, visibility of what is happening stopped most of the time after manufacturing. The diagram to the left, showing a typical Build To Order organization illustrates the classical way of thinking. There is an R&D team working on Innovation, typically a few engineers and most of the engineers are working in Sales Engineering and Manufacturing Preparation to define and deliver a customer specific order. In theory, once delivered none of the engineers will be further involved, and it is up to the Service Department to react to what is happening in the field.

A classical process in the PLM domain is the New Product Introduction process for companies that deliver products in large volumes to the market, most of the time configurable to be able to answer to various customer or pricing segments. This process is most of the time linear and is either described in one stream or two parallel streams. In the last case, the R&D department develops new concepts and prepares the full product for the market. However, the operational department starts in parallel, initially involved in strategic sourcing, and later scaling-up manufacturing disconnected from R&D.

I described these two processes because they both illustrate how disconnected the source (R&D/ Sales)  are from the final result in the field. In both cases managed by the service department. A typical story that I learned from many manufacturing companies is that at the end it is hard to get a full picture from what is happening across the whole lifecycle, How external feedback (market & customers) have the option to influence at any stage is undefined. I used the diagram below even  before companies were even talking about a customer-driven digital transformation. Just understanding end-to-end what is happening with a product along the lifecycle is already a challenge for a company.

Putting the customer at the center

Modern business is about having customer or market involvement in the whole lifecycle of the product. And as products become more and more a combination of hardware and software, it is the software that allows the manufacturer to provide incremental innovation to their products. However, to innovate in a manner that is matching or even exceeding customer demands, information from the outside world needs to travel as fast as possible through an organization. In case this is done in isolated systems and documents, the journey will be cumbersome and too slow to allow a company to act fast enough. Here digitization comes in, making information directly available as data elements instead of documents with their own file formats and systems to author them. The ultimate dream is a digital enterprise where date “flows”, advocated already by some manufacturing companies for several years.

In the previous paragraph I talked about the need to have an infrastructure in place for people in an organization to follow the product along the complete lifecycle, to be able to analyze and improve the customer experience. However, you also need to create a role in the organization for a person to be responsible for combining insights from the market and to lead various disciplines in the organization, R&D, Sales, Services. And this is precisely the role of a Product Manager.

Very common in the world of software development, not yet recognized in manufacturing companies. In case a product manager role exists already in your organization, he/she can tell you how complicated it currently is to get an overall view of the product and which benefits a digital infrastructure would bring for their job. Once the product manager is well-supported and recognized in the organization, the right skill set to prioritize or discover actions/features will make the products more attractive for consumers. Here the company will benefit.

Conclusion

If your company does not have the role of a product manager in place, your business is probably not yet well enough engaged in the customer journey.  There will be broken links and costly processes to get a fast response to the market.  Consider the role of a Product Manager, which will emerge as seen from the software business.

NOTE 1: Just before publishing this post I read an interesting post from Jan Bosch: Structure Eats Strategy. Well fitting in this context

NOTE 2: The existence of a Product Manager might be a digital maturity indicator for a company, like for classical PLM maturity, the handling of the MBOM (PDM/PLM/ERP) gives insight into PLM maturity of a company.

Related to the MBOM, please read: The Importance of a PLM data model – EBOM and MBOM

 

 

 

 

 

Translate

Email subscription to this blog

Advertisements
%d bloggers like this: