You are currently browsing the category archive for the ‘Education’ category.

My last blog post was about reasons why PLM is not simple. PLM supporting a well-planned business transformation requires business change / new ways of working. PLM is going through different stages. We are moving from drawing-centric (previous century), through BOM-centric (currently) towards model-centric (current and future). You can read the post here: PLM is not simple!

I was happy to see  my blog buddy Oleg Shilovitsky chimed in on this theme, with his post: Who needs Simple PLM? Oleg reviewed the stakeholders around a PLM implementation. An analytical approach which could be correct in case predictive human beings were involved. Since human beings are not predictive and my focus is on the combination of PLM and human beings, here are some follow comments on the points Oleg made:

 

Customers (Industrial companies)

Oleg wrote:

A typical PLM customer isn’t a single user. A typical PLM buyer is engineering IT organization purchasing software to solve business problem. His interest to solve business problem, but not really to make it simple. Complex software requires more people, an increased budget and can become an additional reason to highlight IT department skills and experience. End-users hate complex software these days,therefore, usability is desired, but not top priority for enterprise PLM.

My comments on this part: PLM becomes more and more an infrastructure for product information along the whole lifecycle. PLM is no longer an engineering tool provided by IT.

There are now many other stakeholders that need product data, in particular when we are moving to a digital enterprise. A model-based approach connects Manufacturing and Service/Operations through a digital thread. It is the business demanding for PLM to manage their complexity. IT will benefit from a reduction in silo applications.

 

PLM Vendors

Oleg wrote:

…most PLM vendors are far away from a desired level of simplicity. Marketing will like “simple” messages, but if you know how to sell complex software, you won’t be much interested to see “simple package” everyone can sell. However, for the last decade, PLM vendors were criticized a lot for complexity of their solutions, so they are pretty much interested how to simplify things and present it as a competitive differentiation.

 

Here we are aligned. All PLM vendors are dreaming of simplifying their software. Imagine: if you have a simple product everyone can use, you would be the market leader and profitable like crazy without a big effort as the product is simple. Of course, this only works, assuming this dream can be realized.

Some vendors believe that easy customization or configuration of the system means simplification. Others believe a simple user-interface is the key differentiator. Compared to mass-consumer software products in the market, a PLM system is still a niche product, with a limited amount of users working with the exact same version of the software. Combined with the particular needs (customizations) every company has (“we are different”), there will never be a simple PLM solution. Coming back to the business transformation theme, human beings are the weakest link.

 

Implementation and Service Providers

Oleg wrote:

Complex software, customization, configuration, know-hows, best practices, installation… you name it.More of these things can only lead to more services which is core business of PLM service providers. PLM industry is very much competitive, but simplicity is not a desired characteristic for PLM when it comes to service business. Guess what… customer can figure it out how to make it and stop paying for services.

Here we are totally aligned. In the past, I have been involved in potential alliances where certain service providers evaluated SmarTeam as a potential tool for their business. In particular, the major PLM service providers did not see enough value in an easy to configure and relatively cheap product. Cheap means no budget for a huge amount of services.

Still, the biggest problem SmarTeam had after ten years was the fact that every implementation became a unique deployment. Hard to maintain and guarantee for the future. In particular, when new functionality was introduced which potentially already existed as customization.  Implementation and service providers will never say NO to a customer when it comes to further customization of the system. Therefore, the customer should be in charge and own the implementation. For making strategic decision support can come from a PLM consultant or coach.

 

PLM Consultants

Here Oleg wrote:

Complex software can lead to good consulting revenues. It was true many years for enterprise software. Although, most of PLM consultants are trying to distant from PLM software and sell their experience “to implement the future”, simplicity is not a favorite word in consulting language. Customer will hire consulting people to figure out the future and how to transform business, but what if software is simple enough to make it happen without consultant? Good question to ask, but most of them will tell you it is not a realistic scenario. Which is most probably true today. But here is the hint – remember the time PC technicians knew how to configured jumpers on PC cards to make printer actually print something?

Here we are not aligned. Business transformations will never happen because of simple tools. People are measured and pushed to optimize their silos in the organization. A digital transformation, which is creating a horizontal flow and transparency of information, will never happen through a tool. The organization needs to change, and this is always driven by a top-down strategy. PLM consultants are valuable to explain the potential future, to coach all levels of the organization. In theory, a PLM consultant’s job is tool independent. However, the challenge of being completely disconnected from the existing tools might allow for dreams that never can be realized. In reality, most PLM consultants are experienced in one or more specific tools they have been implementing. The customer should be aware of that and make sure they own the PLM roadmap.

My conclusion:

Don’t confuse PLM with a tool, simple or complex. All PLM tools have a common base and depending on your industry and company’s vision there will be a short list. However, before you touch the tools, understand your business and the transformation path you want to take. And that is not simple !!

 

Your opinion?

Oleg and I can continue this debate for a long time.  We would be interested in learning your view on PLM and Simplicity – please tune in through the comments section below:

thinkHappy New Year to all of you and I am wishing you all an understandable and digital future. This year I hope to entertain you again with a mix of future trends related to PLM combined with old PLM basics. This time, one of the topics that are popping up in almost every PLM implementation – numbering schemes – do we use numbers with a meaning, so-called intelligent numbers or can we work with insignificant numbers? And of course, the question what is the impact of changing from meaningful numbers towards unique meaningless numbers.

Why did we create “intelligent” numbers?

IntNumberIntelligent part numbers were used to help engineers and people on the shop floor for two different reasons. As in the early days, the majority of design work was based on mechanical design. Often companies had a one-to-one relation between the part and the drawing. This implied that the part number was identical to the drawing number. An intelligent part number could have the following format: A4-95-BE33K3-007.A

Of course, I invented this part number as the format of an intelligent part number is only known to local experts. In my case, I was thinking about a part that was created in 1995, drawn on A4. Probably a bearing of the 33K3 standard (another intelligent code) and its index is 007 (checked in a numbering book). The version of the drawing (part) is A

A person, who is working in production, assembling the product and reading the BOM, immediately knows which part to use by its number and drawing. Of course the word “immediately” is only valid for people who have experience with using this part. And this was in the previous century not so painful as it is now. Products were not so sophisticated as they are now and variation in products was limited.

Later, when information became digital, intelligent numbers were also used by engineering to classify their parts. The classification digits would assist the engineer to find similar parts in a drawing directory or drawing list.

And if the world had not changed, there would be still intelligent part numbers.

Why no more intelligent part numbers?

There are several reasons why you would not use intelligent part numbers anymore.

  1. PerfectWorldAn intelligent number scheme works in a perfect world where nothing is changing. In real life companies merge with other companies and then the question comes up: Do we introduce a new numbering scheme or is one of the schemes going to be the perfect scheme for the future?If this happened a few times, a company might think: Do we have to through this again and again? As probably topic #2 has also occurred.
  2. The numbering scheme does not support current products and complexity anymore. Products change from mechanical towards systems, containing electronic components and embedded software. The original numbering system has never catered for that. Is there an overreaching numbering standard? It is getting complicated, perhaps we can change ? And here #3 comes in.
  3. BarCodeAs we are now able to store information in a digital manner, we are able to link to this complex part number a few descriptive attributes that help us to identify the component. Here the number is becoming less important, still serving as access to the unique metadata. Consider it as a bar code on a product. Nobody reads the bar code without a device anymore and the device connected to an information system will provide the right information. This brings us to the last point #4.
  4. In a digital enterprise, where data is flowing between systems, we need unique identifiers to connect datasets between systems. The most obvious example is the part master data. Related to a unique ID you will find in the PDM or PLM system the attributes relevant for overall identification (Description, Revision, Status, Classification) and further attributes relevant for engineering (weight, material, volume, dimensions).
    In the ERP system, you will find a dataset with the same ID and master attributes. However here they are extended with attributes related to logistics and finance. The unique identifier provides the guarantee that data is connected in the correct manner and that information can flow or connected between systems without human interpretation or human-spent processing time.

GartnerWorkforceAnd this is one of the big benefits of a digital enterprise, reducing overhead in data handling, often reducing the cost of data handling with 50 % or more (people / customizations)

 

What to do now in your company?

There is no business justification just to start renumbering parts just for future purposes. You need a business reason. Otherwise, it will only increase costs and create a potential for migration errors. Moving to meaningless part numbers can be the best done at the moment a change is required. For example, when you implement a new PLM system or when your company merges with another company. At these moments, part numbering should be considered with the future in mind.

augmentedAnd the future is no longer about memorizing part classifications and numbers, even if you are from the generation that used to structure and manage everything inside your brain. Future businesses rely on digitally connected information, where a person based on machine interpretation of a unique ID will get the relevant and meaningful data. Augmented reality  (picture above) is becoming more and more available. It is now about human beings that need to get ready for a modern future.

 

Conclusion

Intelligent part numbers are a best practice from the previous century. Start to think digital and connected and try to reduce the dependency of understanding the part number in all your business activities. Move towards providing the relevant data for a user. This can be an evolution smoothening a future PLM implementation step.

 

clip_image002Looking forward to discussing this topic and many other PLM related practices with you face to face during the Product Innovation conference in Munich. I will talk about the PLM identity change and lead a focus group session about PLM and ERP integration. Looking from the high-level and working in the real world. The challenge of every PLM implementation.

PDT2015-1In this post observations from the PDT 2015 conference which took place in the IVA Conference Center, part of the Royal Swedish Academy of Engineering Services in Stockholm.

The conference was hosted by Eurostep supported by CIMdata, Airbus, Siemens Energy and Volvo AB.

For me, the PDT conference is interesting because there is a focus on architecture and standards flavored with complementary inspiring presentations. This year there were approximate 110 participants from 12 countries coming from different industries listening to 25 presentations spread over two days.

Some highlights

cimdataPeter Bilello from CIMdata kicked off the conference with his presentation: The Product Innovation Platform: What’s Missing.

Peter explained how the joined vision from CIMdata, Gartner and IDC related to a product innovation platform is growing.

The platform concept is bringing PLM to the enterprise level as a critical component to support innovation. The main challenge is to make the complex simple – easier said than done, but I agree this is the real problem of all the software vendors.

Peter showed an interesting graph based on a survey done by CIMdata, showing two trends.

  • The software and technology capabilities are closing more and more the gap with the vision (a dream can come true)
  • The gap between the implemented capabilities and the technical possible capabilities is growing too. Of course, there is a difference between the leaders and followers.

Peter described the three success factors determining if a platform can be successful:

  • Connection: how easy is it for others to connect and plug into the platform to participate as part of the platform. Translated to capabilities this requires the platform to support open standards to connect external data sources as you do not want to build new interfaces for every external source. Also, the platform provider should provide an integration API with a low entry level to get the gravity (next point)
  • Gravity: how well does the platform attract participants, both producers, and consumers. Besides a flexible and targeted user interfaces, there must be an infrastructure that allows companies to model the environment in such a manner that it supports experts creating the data, but also support consumers in data, who are not able to navigate through details and want a consumer-friendly environment.
  • Flow: how well does the platform support the exchange and co-creation of value. The smartphone platforms are extremely simple compared to a business platform as the dimension of lifecycle status and versioning is not there. A business platform needs to have support for versioning and status combined with relating the information in the right context. Here I would say only the classical PLM vendors have in-depth experience with that.

Having read these three bullet points and taking existing enterprise software vendors for PLM, ERP, and other “platforms” in mind, you see there is still a way to go before we have a “real” platform available.

According to Peter, companies should start with anchoring the vision for a business innovation platform in their strategic roadmap. It will be an incremental journey anyway. How clear the vision is connected to business execution in reality differentiates leaders and followers.

gartner

 

Next Marc Halpern from Gartner elaborated on enabling Product Innovation Platforms. Marc started to say that the platform concept is still the process of optimizing PLM.

Marc explained the functional layers making up a product innovation platform, see below

 

Gartner-platform layering

According to Marc, in 2017 the major design, PLM and business suite vendors will all offer product innovation platforms, where certain industries are more likely to implement product innovation platforms faster than others.

Marc stressed that moving to a business innovation platform is a long, but staged, journey. Each stage of the journey can bring significant value.

Gartner has a 5-step maturity model based on the readiness of the organization. Moving from reactive, repeatable, integrating towards collaborating and ultimately orchestrating companies become business ready for PDM first, next PLM and the Product Innovation Platform at the end. You cannot skip one of these steps according to Marc. I agree, PLM implementations in the past failed because the company was dreaming that the PLM system would solve the business readiness of the organization.

Marc ended with a case study and the conclusions were not rocket science.

The importance of change management, management understanding and commitment, and business and IT joined involvement. A known best practice, still we fail in many situations to act accordingly, due to underestimation of the effort. See also my recent blog post: The importance of change management for PLM.

peepoople logoNext session from Camilla Wirseen was a real revelation. Her presentation:  We are all Peepoople – innovation from the bottom of the pyramid.

She described how Anders Wilhemson, original a professor in architecture, focused on solving a global, big problem addressing 2.5 billion people in the world. These 2.5 billion persons, the poorest of the world, lack sanitation, which results in a high death rate for children (every 15 seconds a child dies because of contaminated water). Also the lack of safe places for sanitation lead to girls dropping out of school and women and children being at risk for rape when going to toilet places.

The solution is a bag, made of high-performance biodegradable plastics combined with chemicals, already in the bag, processing the feces to kill potential diseases and make the content available as fertilizer for the agricultural industry.

The plastic bag might not be new, but adding the circular possibilities to it, make it a unique approach to creating a business model providing collection and selling of the content again. For the poorest every cent they can earn makes a different.

peepoople statement

Currently in initial projects the Peepoo system has proven its value: over 95 % user acceptance. It is the establishment that does not want to introduce Peepoo on a larger scale. Apparently they never realized themselves the problems with sanitation.

Peepoo is scaling up and helping the bottom of our society. And the crazy fact is that it was not invented by engineers but by an architect. This is challenging everyone to see where you can contribute to a better world. Have a look at peepoople.cominnovation with an enormous impact!

volvologoNext Volvo Cars and Volvo Trucks presented similar challenges: How to share product data based on external collaboration. The challenge of Volvo Cars is that it has gone through different ownerships and they require a more and more flexible infrastructure to share data. It is not about data pushing to a supplier anymore, it is about integrating partners where you have to share a particular part of your IP with the partner. And where the homegrown KPD system is working well for internal execution, it was never designed for partner sharing and collaboration. Volvo Cars implemented a Shared Technology Control application outside the firewall based on Share-A-space, where inside and outside data is mapped and connected. See their summary below. A pragmatic approach which is bringing direct benefits.

clip_image002[10]

Concluding from the Volvo sessions: Apparently it ‘s hard to extend an existing system or infrastructure for secure collaboration with an external partner. The complexity of access right, different naming conventions, etc. Instead of that it is more pragmatic to have an intermediate system in the middle, like Share-A-space, that connects both worlds. The big advantage of Share-A-space is that the platform is based on the ISO 10303 (PLCS) standard and, therefore, has one of the characteristics of a real platform: openness based on standards.

awesomegroupJonas Hammerberg from the Awesome Group closed day one with an inspiring and eye-opening presentation: Make PLM – The Why and How with Gamification FUN.

Jonas started to describe the behavioral drivers new generations have based on immediate feedback for the feeling of achievement, pride and status and being in a leading environment combined with the feelings of being in a group feeling friendship, trust, and love.

Current organizations are not addressing these different behaviors, it leads to disengagement at the office / work floor as Jonas showed from a survey held in Sweden – see figure. The intrinsic motivation is missing. One of the topics that concerns me the most when seeing current PLM implementations.

engagement

The Awesome group has developed apps and plug-ins for existing software, office and PLM bring in the feelings of autonomy, mastery and purpose to the individual performing in teams. Direct feedback and stimulating team and individual performance as part of the job.

By doing so the organization also gets feedback on the behavior, activity, collaboration and knowledge sharing of individuals and how this related to their performance. An interesting concept to be implemented in situations where gamification makes sense.

clip_image002[12]Owe Lind and Magnus Lidström from Scania talked about their Remote Diagnostics approach where diagnostic readings can be received from a car through a mobile phone network either to support preventive maintenance or actual diagnostics on the road and provide support.

Interesting Owe and Magnus were not using the word IoT (Internet of Things) at all, a hype related to these capabilities. Have a look here on YouTube

clip_image002[14]There was no chance to fall asleep after lunch, where Robin Teigland from the Stockholm School of Economics took us in a whirlwind through several trends under the title: The Third Revolution – exploring new forms of value creation through doing more with less.

The decomposition of traditional business into smaller and must faster communities undermine traditional markets. Also concepts like Uber, Bitcoin becoming a serious threat. The business change as a result of connectivity and communities leading to more and more networks of skills bringing together knowledge to design a car (Local Motors), funding (Kickstarter) – and it is all about sharing knowledge instead of keeping it inside – sharing creates the momentum in the world. You can look at Robin’s presentation(s) at Slideshare here.

future quote

All very positive trends for the future, however, a big threat to the currently established companies. Robin named it the Third Revolution which is in line with what we are discussing in our PLM world, although some of us call it even the Fourth Revolution (Industry 4.0).

image

EignerProfessor Martin Eigner from the Technical University of Kaiserslautern brought us back to reality in his presentation: Industry 4.0 or Industrial Internet: What is the impact for PLM?

Martin stood at the base for what we call PLM and already for several years he is explaining to us that the classical definition for PLM is too narrow. More and more we are developing systems instead of products. Therefore, he prefers the abbreviation SysLM, which is more than 3 characters and therefore probably hard to accept by the industry.

PDMtoSysLM

System development and, therefore, multidisciplinary development of systems introduces a new complexity. Traditional change management for Mechanical CAD (ECO/ECR) is entirely different from how software change management is handled (baselines / branches related to features). The way systems are designed, require a different methodology where systems engineering is an integral part of the development process, see Model-Based Systems Engineering (MBSE).

Next Martin discussed 4 potential IT-architectures where, based on the “products” and business needs, a different balance of PLM, ALM or ERP activities is required.

Martin’s final point was about the need for standards support these architectures, bringing together OSLC, PCLS, etc.
Standards are necessary for fast and affordable integrations and data exchange.

imageMy presentation: The Perfect Storm or a fatal Tsunami was partly summarizing topics from the conference and, in addition, touching on two topics.

The first topic is related to big data and analytics.  Many are trying to get a grip on big data with analytics. However, the real benefit of big data comes when you are able to apply algorithms to it. Gartner just made an interesting statement related to big data (below) and Marc Halpern added to this quote that there is an intrinsic need for data standards in order to apply algorithms.

Gartner algorithms

When algorithms can be used, classical processes like ECO, ECR or managers might become obsolete and even a jobs like an accountant is at risk. This as predicted in article in the Economist in February 2014 – the onrushing Wave

The second topic, where I believe we are still hesitating too long at management level, is making decisions, to anticipate the upcoming digital wave and all of its side effects. We see a huge wave coming. If we do not mobilize the people, this wave might be a tsunami for those still at the seaside

Conclusion: PDT2015 was an inspiring, well-balanced conference with excellent opportunity to network with all people attending. For those interested in the details of the PLM future and standards an ideal opportunity to get up to date. And next the challenge: Make it happen at your company!

.. if you reach this point, my compliments for your persistency to read it all. Too long for a blog post and even here I had to strip

 

classificationIn my previous post describing the various facets of the EBOM, I mentioned several times classification as an important topic related to the PLM data model. Classification is crucial to support people to reuse information and, in addition, there are business processes that are only relevant for a particular class of information, so it is not only related to search/reuse support.

In 2008, I wrote a post about classification, you can read it here. Meanwhile, the world has moved on, and I believe more modern classification methods exist.

Why classification ?

searchFirst of all classification is used to structure information and to support retrieval of the information at a later moment, either for reuse or for reference later in the product lifecycle. Related to reuse, companies can save significant money when parts are reused. It is not only the design time or sourcing time that is reduced. Additional benefits are lower risks for errors (fewer discoveries), reduced process and approval time (human overhead), reduced stock (if applicable), and more volume discount (if applicable) and reduced End-Of-Life handling.

An interesting discussion about reuse started by Joe Barkai can also be found on LinkedIn here, including interesting comments

Classification can also be used to control access to certain information (mainly document classification), or classification can be used to make sure certain processes are followed, e.g. export control, hazardous materials, budget approvals, etc. Although I will speak mainly about part classification in this post, classification can be used for any type of information in the PLM data model.

Classification standards

din4000Depending on the industry you are working in, there are various classification standards for parts. When I worked in the German-speaking countries (the DACH-länder) the most discussed classification at that time was DIN4000 (Sachmerkmal-liste), a must have standard for many of the small and medium sized manufacturing companies. The DIN 4000 standard had a predefined part hierarchy and did not describe the necessary properties per class. I haven’t met a similar standard in other countries at that time.

Another very generic classification I have seen are the UNSPC standard, again a hierarchical classification supporting everything in the universe but no definition of attributes.

15926Other classification standards like ISO13399, RosettaNET, ISO15926 and IFC exist to support collaboration and/or the supply chain. When you want to exchange data with other disciplines or partners. The advantage of a standard definition (with attributes) is that you can exchange data with less human processing (saving labor costs and time – the benefit of a digital enterprise).

I will not go deeper into the various standards here as I am not the expert for all the standards. Every industry has its own classification standards, a hierarchical standard, and if more advanced the hierarchy is also supported by attributes related to each class. But let´s go into the data model part.

Classification and data model

clip_image002The first lesson I learned when implementing PLM was that you should not build your classification hard-coded into the PLM, data model. When working with SmarTeam is was very easy to define part classes and attributes to inherit. Some customers had more than 300 classes represented in their data model just for parts. You can imagine that it looks nice in a demo. However when it comes to reality, a hard-coded classification becomes a pain in the model. (left image, one of the bad examples from the past)

1 – First of all, classification should be dynamic, easy to extend.

2 – The second problem however with a hard-coded classification was that once a part is defined for the first time the information object has a fixed class. Later changes need a lot of work (relinking of information / approval processes for the new information).

3 – Finally, the third point against a hard-coded classification is that it is likely that parts will be classified according to different classifications at the same time. The image bellow shows such a multiple classification.

multiclass

So the best approach is to have a generic part definition in your data model and perhaps a few subtypes. Companies tend to differentiate still between hardware (mechanical / electrical) parts and software parts.

Next a part should be assigned at least to one class, and the assignment to this class would bring more attributes to the part. Most of the PLM systems that support classification have the ability to navigate through a class hierarchy and find similar parts.

When parts are relevant for ERP they might belong to a manufacturing parts class, which add particular attributes required for a smooth PLM – ERP link. Manufacturing part types can be used as templates for ERP to be completed.

This concept is also shared by Ed Lopategui as commented to my earlier post about EBOM Part types. Ed states:

Think part of the challenge moving forward is we’ve always handled these as parts under different methodologies, which requires specific data structures for each, etc. The next gen take on all this needs to be more malleable perhaps. So there are just parts. Be they service or make/buy or some combination – say a long lead functional standard part and they would acquire the properties, synchronizations, and behaviors accordingly. People have trouble picking the right bucket, and sometimes the buckets change. Let the infrastructure do the work. That would help the burden of multiple transitions, where CAD BOM to EBOM to MBOM to SBOM eventually ends up in a chain of confusion.

I fully agree with his statement and consider this as the future trend of modern PLM: Shared data that will be enriched by different usage through the lifecycle.

Why don’t we classify all data in PLM?

There are two challenges for classification in general.

  • The first one is that the value of classification only becomes visible in the long-term, and I have seen several young companies that were only focusing on engineering. No metadata in the file properties, no part-centric data management structure and several years later they face the lack of visibility what has been done in the past. Only if one of the engineers remembers a similar situation, there is a chance of reuse.
  • The second challenge is that through a merger or acquisition suddenly the company has to manage two classifications. If the data model was clean (no hard-coded subclasses) there is hope to merge the information together. Otherwise, it might become a painful activity to discover similarities.

SO THINK AHEAD EVEN IF YOU DO NOT SEE THE NEED NOW !

Modern search based applications

There are ways to improve classification and reuse by using search-based application which can index archives and try to find similarity in properties / attributes. Again if the engineers never filled the properties in the CAD model, there is little to nothing to recover as I experienced in a customer situation. My PLM US peer, Dick Bourke, wrote several articles about search-based applications and classification for engineering.com, which are interesting to read if you want to learn more: Useful Search Applications for Finding Engineering Data

So much to discuss on this topic, however I reached my 1000 words again Sad smile

Conclusion

Classification brings benefits for reuse and discovery of information although benefits are long-term. Think long-term too when you define classifications. Keep the data model simple and add attributes groups to parts based on functional classifications. This enables a data-driven PLM implementation where the power is in the attributes not longer in the part number. In the future, search-based applications will offer a quick start to classify and structure data.

 

imageSomeone notified me that not everyone subscribed to my blog necessary will read my posts on LinkedIn. Therefore I will repost the upcoming weeks some of my more business oriented posts from LinkedIn here too. This post was from July 3rd and an introduction to all the methodology post I am currently publishing.

image

The importance of a (PLM) data model

thinkWhat makes it so hard to implement PLM in a correct manner and why is this often a mission impossible? I have been asking myself this question the past ten years again and again. For sure a lot has to do with the culture and legacy every organization has. Imagine if a company could start from scratch with PLM. How would they implement PLM nowadays?

My conclusion for both situations is that it all leads to a correct (PLM) data model, allowing companies to store their data in an object-oriented manner. In this way reflecting the behavior the information objects have and the way they mature through their information lifecycle. If you making compromises here, it has an effect on your implementation, the way processes are supported out-of-the-box by a PLM system or how information can be shared with other enterprise systems, in particular, ERP. PLM is written between parenthesis as I believe in the future we do not talk PLM or ERP separate anymore – we will talk business.

Let me illustrate this academic statement.

A mid-market example

imageWhen I worked with SmarTeam in the nineties, the system was designed more as a PDM system than a PLM system. The principal objects were Projects, Documents, and Items. The Documents had a sub-grouping in Office documents and CAD documents. And the system had a single lifecycle which was very basic and designed for documents. Thanks to the flexibility of the system you could quickly implement a satisfactory environment for the engineering department. Problems (and customizations) came when you wanted to connect the data to the other departments in the company.

The sales and marketing department defines and sells products. Products were not part of the initial data model, so people misused the Project object for that. To connect to manufacturing a BOM (Bill of Material) was needed. As the connected 3D CAD system generated a structure while saving the assemblies, people start to consider this structure as the EBOM. This might work if your projects are mechanical only.

However, a Document is not the same as a Part. A Document has a complete different behavior as a Part. Documents have continuous iterations, with a check-in/checkout mechanism, where the Part definition remains unchanged and gets meanwhile a higher maturity.

The correct approach is to have the EBOM Part structure, where Part connect to the Documents. And yes, Documents can also have a structure, but it is not a BOM. SmarTeam implemented this around 2004. Meanwhile, a lot of companies had implemented their custom solution for EBOM by customization not matching this approach. This created a first level of legacy.

When SmarTeam implemented Part behavior, it became possible to create a multidisciplinary EBOM, and the next logical step was, of course, to connect the data to the ERP system. At that time, most implementations have been pushing the EBOM to the ERP system and let it live there further. ERP was the enterprise tool, SmarTeam the engineering tool. The information became disconnected in an IT-manner. Applying changes and defining a manufacturing BOM was done manually in the ERP system and could be done by (experienced) people that do not make mistakes.

Next challenge comes when you want to automate the connection to ERP. In that case, it became apparent that the EBOM and MBOM should reside in the same system. (See old and still actual post with comments here: Where is the MBOM) In one system to manage changes and to be able to implement these changes quickly without too much human intervention. And as the EBOM is usually created in the PLM system, the (commercial/emotional) PLM-ERP battle started. “Who owns the part definition”, “Who owns the MBOM definition” became the topic of many PLM implementations. The real questions should be: “Who is responsible for which attributes of the Part ?” and “Who is responsible for which part of the MBOM definition ?” as data should be shared not owned.

The SmarTeam evolution shows how a changing scope and an incomplete/incorrect data model leads to costly rework when aligning to the mainstream. And this is happening with many implementation and other PLM systems. In particular when the path is to grow from PDM to PLM. An important question remains what is going to be mainstream in the future. More on that in my conclusion.

A complex enterprise example

In the recent years, I have been involved in several PLM discussions with large enterprises. These enterprises suffer from their legacy. Often the original data management was not defined in an object-oriented manner, and the implementation has been expanding with connected and disconnected systems like a big spaghetti bowl.

The main message most of the time is:

“Don’t touch the systems it as it works for us”.

The underlying message is;

“We would love to change to a modern approach, but we understand it will be a painful exercise and how will it impact profitability and execution of our company”

The challenge these companies have is that it extremely hard to imagine the potential to-be situation and how it is affected by the legacy. In a project that I participated several years ago the company was migrating from a mainframe database towards a standard object-oriented (PLM) data model. The biggest pain was in mapping data towards the object-oriented data model. As the original mainframe database had all kind of tables with flags and mixed Part & Document data, it was almost impossible to make a 100 % conversion. The other challenge was that knowledge of the old system had vaporized. The result at the end was a customized PLM data model, closer to current reality, still containing legacy “tricks” to assure compatibility.

All these enterprises at a particular time have to go through such a painful exercise. When is the best moment? When business is booming, nobody wants to slow-down. When business is in a lower gear, costs and investments are minimized to keep the old engine running efficiently. I believe the latter would be the best moment to invest in making the transition if you believe your business will still exist in 10 years from now.

Back to the data model.

Businesses should have today a high-level object-oriented data model, describing the main information objects and their behavior in your organization. The term Master Data Management is related to this. How many companies have the time and skills to implement a future-oriented data model? And the data model must stay flexible for the future.

knowledgeCompare it to your brain, which also stores information by its behavior and by learning the brain understands what it logically related. The internal data model gets enriched while we learn.

Once you have a business data model, you are able to implement processes on top of it. Processes can change over time, therefore, avoid hard-coding specific processes in your enterprise systems. Like the brain, we can change our behavior (applying new processes) still it will be based on the data model stored inside our brain.

Conclusion:

A lot of enterprise PLM implementations are in a challenging situation due to legacy or incomplete understanding and availability of an enterprise data model. Therefore cross-department implementations and connecting others systems are considered as a battle between systems and their proprietary capabilities.

image

The future will be based on business platforms and realizing this take years – imagine openness and usage of data standards. An interesting conference to attend in the near future for this purpose is the PDT2015 conference in Stockholm.

Meanwhile I also learned that a  one-day Master Data Management workshop will be held before the PDT2015 conference starts on the 12th of October. A good opportunity to deep-dive for three days !

dummies_logo

 

In my earlier posts, I described generic PLM data model and practices related to Products, BOMs en recently EBOM and (CAD) Documents. This time I want to elaborate a little bit more on the various EBOM characteristics.

 

The EBOM is the place where engineering teams collaborate and define the product. A released EBOM is supposed to give the full engineering specification how a product should behave including material quality and tolerances. This makes it different from the MBOM, which contains the specification of how this product should be manufactured based on exact components and materials.

Depending on the type of product there are several EBOM best practices which I will discuss here (briefly) in alphabetical order:

EBOM & Buy Part

PDM_ERP_AML_AVLUsually, an EBOM consists of Make and Buy parts –an attribute on the EBOM part indicates the preferred approach. Make parts are typically sourced towards qualified suppliers, where Buy parts can be more generic and based on qualified vendors. Engineering specifies who are the approved Manufacturers for the part (AML) and purchasing decides who are the approved Vendors for this part (AVL). In general Buy parts do not need an engineering efforts every time the part is used in a product.

EBOM & CAD related

My previous post already discussed some of the points related to EBOM and CAD Documents. Here I want to extend a little more addressing the close relation between MCAD parts and EBOM parts. In particular in the Engineering To Order industry, there is, most of the time, no standard product to relate to. In that case, Mechanical CAD can be the driver for the EBOM definition and usually EBOM Make parts are designed uniquely. The challenge is to understand similar parts that might exist and reuse them. Classification (and old post here) and geometric search capabilities support the modern engineer. I will come back to classification in a later post

EBOM – Configuration Item

cmiiIn case a product is designed for mass production throughout a longer lifetime, it becomes necessary to manage the product configuration over time. How is the product is defined today and avoid the need to have for each product variant a complete EBOM to manage. The EBOM can be structured with Options and Variants. In that case, having Configuration Items in the EBOM is crucial. The Configuration Item is the top part that is versioned and controlled. Parts below the configuration item, mostly standard parts do not impact the version of the Configuration Item as long as the Form-Fit-Function from the Configuration Item does not change. Configuration Management is a topic on its own and some people believe PLM systems were invented to support Configuration Management.

EBOM – Company Standard Part

Standard Parts are often designed parts that should be used across various products or product lines. The advantage of company standard parts is that it reduces costs throughout the whole product lifecycle. Less design time, less manufacturing setup time and material sourcing effort and potential lower material cost thanks to higher volumes. Any EBOM part could become at a certain moment a Company Standard part and it is recommended to use a classification related to these parts. Otherwise they will not be found again. As mentioned before I will come back to classification.

EBOM – Functional group

Sometimes during the design of a product, several parts are logically grouped together from the design point of view, either because they are modular or because they always appear as a group of parts.

The EBOM, in that case, can contain phantom parts, which do not represent an end item. These phantom parts assist the company in understanding changing one of the individual parts in this functional group.

EBOM – Long Lead

In typical Engineering to Order or Build To Order deliveries there are components on the critical path of the product delivery. Components with a long lead time should be identified and ordered as early as possible during the delivery process. Often the EBOM is not complete or mature enough to pass through all the information to ERP. Therefore Long Lead items require a fast track towards ERP and a special status in the EBOM reflecting its ordering status. Long Lead items are the example where a company can benefit from a precise interaction between PLM and ERP with various status handshakes and approvals during the delivery process

EBOM – Make parts

Make Parts in an EBOM are usually specified by their related model and drawings. Therefore Make Parts usually have revisions but be aware that they do not follow the same versioning of the related model or drawing. A Make Part is in an In Work status as long as the EBOM is not released. Once the model is approved, the EBOM part can be approved or released. Often companies do not want to release the data as long as manufacturing is not completed. This to make sure that the first revision comes out at the first delivery of the product.

EBOM – Materials

In many mechanical assemblies, the designer specifies materials with a particular length. For example a rubber strip, tubing / piping. When extracting the information from the 3D CAD assembly, this material instance will get a unique identifier. Here it is important that the Material Part has an attribute that describes the material specification. In the ideal data model, this is a reference to a Materials library. Next when manufacturing engineering is defining the MBOM, they can decide on material quantities to purchase for the EBOM Material.

EBOM – Part Number

QRThis could be a post on its own. Do we need intelligent part numbers or can we use random generated unique numbers? I have a black and white opinion about that. If you want to achieve a digital enterprise you should aim for random generated unique numbers. This because in a digital enterprise data is connected without human transfer. The PLM and ERP link is unambiguous. Part recognition at the shop floor can be done with labels and scanning at the workstation. There is no need for a person to remember or transfer information from one system or location by understanding the part number. The uniquely generated number make sure every person will have a look at the digital metadata online available. Therefore immediately seeing a potential status change or upcoming engineering change. Supporting the intelligent numbering approach allows people to work disconnected again, therefore not guaranteeing that an error-free activity takes place. People make mistakes, machines usually not.

EBOM – Service Parts

It is important to identify already in the EBOM which parts need to be serviced in operation and engineering should relate the service information already to the EBOM part. This could be the same single part with a different packaging or it could be a service kit plus instructions linked to the part. In a PLM environment, it is important that this activity is done upfront by engineering to avoid later retrieval of the data and work again on service information. A sensitive point here is that engineers currently in the classical approach are not measured on the benefits they deliver downstream when the products are in the field. Too many companies work here in silos.

EBOM – Standard Parts

3dFinally, as I reach already the 1000 words, a short statement about EBOM standard parts. These standard parts, based on international or commercial standards do not need a revision and often they have a specification sheet, not necessary a 3D model for visualization. Classification is crucial for Standard Part and here I will write a separate post about dealing with Standard Parts, both mechanical and electrical.

Concluding: this post we can see that the EBOM is having many facets and based on the type of EBOM part different behavior is expected. It made me realize PLM is not that simple as I thought. In general when defining an EBOM data model you would try to minimize the specific classes for the EBOM part. Where possible, solve it with attributes (Make/Buy – Long Lead – Service – etc.). Use classification to store specific attributes per part type related to the part. Classification will be my next topic as it appears

Feel free to jump on any of the EBOM characteristics for an extended discussion

note: images borrowed from the internet contain links to the original location where I found them. The context there is not always relevant for this post.

In my series of blog posts related to the (PLM) data model, I talked about Product, BOMs and Parts. This time I want to focus on the EBOM and (CAD) Documents relation. This topic became relevant with the introduction of 3D CAD.

Before companies were using 3D CAD systems, there was no discussion about EBOM or MBOM (to my knowledge). Engineering was producing drawings for manufacturing and not every company was using the mono-system (for each individual part a specifying drawing). Drawings were mainly made to assist production and making a drawing for an individual part was a waste of engineering time. Parametric drawings were used to specify similar parts. But now we are in the world of 3D!

imageWith the introduction of 3D CAD systems for the mainstream in the nineties (SolidWorks, Solid Edge, Inventor) there came a need for PDM systems managing the individual files from a CAD assembly. The PDM system was necessary to manage all the file versions. Companies that were designing simple products sometimes remained working file-based, introducing the complexity of how to name a file and how to deal with revisions. Ten years ago I was investigating data management for the lower tiers of the automotive supply chain. At that time still 60 % of the suppliers were using CATIA were working file-based. Data management was considered as an extra complexity still file version control was a big pain.

This has changed for several reasons:

  • More and more OEMs were pushing for more quality control of the design data (read PDM)
  • Products became more modular, which means assemblies can be used as subassemblies in other products, pushing the need for where used control
  • Products are becoming more complex and managing only mechanical CAD files is not enough anymore – Electronics & Software – mechatronics – became part of the product

Most PDM systems at that time (I worked with SmarTeam) were saving the 3D CAD structure as a quantity-based document structure, resembling a lot a structure called the EBOM.

CAD DOC structure

 

This is one of the most common mistakes made in PLM implementations.

The CAD structure does not represent the EBOM !!!

Implementers started to build all kind of customizations to create automatically from the CAD structure a Part structure, the EBOM. Usually these customizations ended up as a mission impossible, in particular when customers started to ask for bidirectional synchronization. They expected that when a Part is removed in the EBOM, it would be deleted in the CAD assembly too.

And then there was the issue that companies believed the CAD Part ID should be equal to the Part ID. This might be possible for a particular type of design parts, but does not function anymore with flexible parts, such as a tube or a spring. When this Part is modeled in a different position, it created a different CAD Document, breaking the one-to-one relation.

Finally another common mistake that I have seen in many PDM implementations is the addition of glue, paint and other manufacturing type of parts to the CAD model, to be able to generate a BOM directly from the CAD.

imageFrom the data model perspective it is more important to understand that Parts and CAD documents are different type of objects. In particular if you want to build a PLM implementation where data is shared across all disciplines. For a PDM implementation I care less about the data model as the implementation is often not targeting enterprise continuity of data but only engineering needs.

A CAD Document (Assembly / Part / Drawing / …) behaves like a Document. It can be checked-in and checked out any time a change is made inside the file. A check-in operation would create a new version of the CAD Document (in case you want to trace the history of changes).

Meanwhile the Part specified by the CAD Document does not change in version when the CAD Document is changed. Parts usually do not have versions; they remain in the same revision as long as the specifying CAD Document matures.

Moving from PDM to PLM

For a PLM implementation it is important to think “Part-driven” which means from an initial EBOM, representing the engineering specification of the Product, maturing the EBOM with more and more design specification data. Design specification data can be mechanical assemblies and parts, but also electrical parts. The EBOM from a PCB might come from the Electrical Design Application as in the mechanical model you will not create every component in 3D.

And once the Electrical components are part of the EBOM, also the part definition of embedded software can be added to the BOM. For example if software is needed uploaded in flash memory chips. By adding electrical and software components to the EBOM, the company gets a full overview of the design maturity of ALL disciplines involved.

The diagram below shows how an EBOM and its related Documents could look like:

EBOM.docs

 

This data model contains a lot of details:

  • As discussed in my previous post – for the outside world (the customer) there is a product defined without revision
  • Related to the Product there is an EBOM (Part assembly) simplified as a housing (a mechanical assembly), a connector (a mechanical art) and a PCB (a mechanical representation). All these parts behave like Mechanical Parts; they have a revision and status.
  • The PCB has a second representation based on an electrical schema, which has only (for simplification) two electrical parts, a resistor and a memory chip. As you can see these components are standard purchasable parts, they do not have a revision as they are not designed.
  • The Electrical Part Flash Memory has a relation to a Software Part which is defined by Object Code (a zip-file?) which of course is specified by a software specification (not in the diagram). The software object code has a version, as most of the time software is version managed, as it does not follow the classical rules of mechanical design.

Again I reached my 1000 words, a sign to stop explaining this topic. For sure there are a lot of details to explain to this data model part too.

Most important:

  • A CAD structure is not an EBOM (it can be used to generate a part of the EBOM)
  • CAD documents and EBOM parts have a different behavior. CAD documents have versions, Parts do not have versions (most of the time
  • The EBOM is the place where all disciplines synchronize their data, providing during the development phase a single view of the design status.

Let me know if this was to abstract and feel free to ask questions. Important for this series of blog post is to provide a methodology baseline for a real PLM data model.

I am looking forward to your questions or remarks to spark up the discussion.

image

As described in my latest LinkedIn post if you want to install PLM successful there are two important points to address from the implementation point of view:

  • An explicit data model not based on system or tools capabilities, but on the type of business the company is performing. There is a difference in an engineering to order company, a built to order company or a configure to order company.
  • In PLM (and Business) it is all about enabling an efficient data flow through the organization. There is no ownership of data. It is about responsibilities for particular content per lifecycle stage combined with sharing

Historically PLM implementations started with capturing the CAD data and related EBOM as this is what the CAD-related PLM vendors were pushing for and this was often for the engineering department the biggest pain. The disadvantage of this approach is that it strengthens the silo-thinking process. The PLM system becomes an engineering tool instead of an enterprise system.

I believe if you really want to be able to implement PLM successful in a company, start from a common product/part information backbone. This requires the right business objects and, therefore, the right data modeling. The methodology described below is valid for build to order and configure to order companies, less applicable for engineering to order.

BusinessModels

In a build to order company there are the following primary information objects:

  • A Product ( representing the customer view of what is sold to the outside world)
  • An EBOM ( representing a composition of Parts specifying the Product at a particular time)
  • An MBOM (representing the manufacturing composition of the Product at a given time)

And, of course, there are for all the information objects related Documents. Various types and when you can work more advanced, the specification document, can be the source for individually extracted requirements (not in this post)

Let´s follow an End to End scenario from a typical Build to Order company process.

Quoting phase

A potential customer sends an RFP for a product they need. The customer RFP contains information about how the product should behave (Specification / Requirements) and how it should be delivered (packaging). A basic data model for this RFP would be:

DataModel-1

Note the following details:

  • All information objects have a meaningless number. The number is only there to support unique identification and later integration with other systems. The meaning should come from the other attribute data on the object and its relations. (A blog post on its own)
  • The Product can have instead of the meaningless number the number provided by the customer. However, if this number is not unique to the company, it might be just another attribute of the product
  • In general Products do not have revisions. In time, there might be other BOMs related to the product. Not in this post, products might have versions and variants. And products might be part of a product family. In this case, I used a classification to define a classification code for the product, allowing the company to discover similar products from different customers done. This to promote reuse of solutions and reuse of lessons learned.
  • The customer object represents the customer entity and by implementing it as a separate object, you will be able to see all information related to this customer quickly. This could be Products (ordered / in RFQ / etc.) but also other relevant information (Documents, Parts, …)
  • The initial conceptual BOM for the customer consists of two sub-BOMs. As the customer wants the products to be delivered in a 6-pack, a standard 6-pack EBOM is used. Note: the Status is Released and a new conceptual EBOM is defined as a placeholder for the BOM definition of the Product to design/deliver.
  • And for all the Parts in the conceptual EBOM there can be relations towards one or more documents. Usually, there is one specifying document (the CAD model) and multiple derived documents (Drawings, Illustrations, …)
  • Parts can have a revision in case the company wants to trace the evolution of a Part. Usually when Form-Fit-Function remains the same, we speak about a revision. Otherwise, the change will be a new part number. As more and more the managed information is no longer existing on the part number, companies might want to use a new part number at any change, storing in an attribute what its predecessor was.
  • Documents have versions and revisions. While people work on a document, every check-in / check-out moment can create a new version of the file(s), providing tractability between versions. Most of the time at the end there will be a first released version, which is related to the part specified.
  • Do not try to have the same ID and Revision for Parts and Documents. In the good old days of 2D drawings this worked, in the world of 3D CAD this is not sustainable. It leads to complexity for the user. Preferably the Part and the specifying Document should have different IDs and a different revision mechanism.

And the iterations go on:

Now let´s look at the final stage of the RFQ process. The customer has requested to deliver the same product also in single (luxury) packaging as this product will be used for service. Although it is exactly the same physical product to produce, the product ID should be different. If the customer wants unambiguous communication, they should also use a different product ID when ordering the product for service or for manufacturing. The data model for this situation will look as follows (assuming the definitions are done)

DataModel-2

Note the following details:

  • The Part in the middle (with the red shadow) – PT000123 represents the same part for both, the product ordered for manufacturing, as well as the product ordered for service, making use of a single definition for both situations
  • The Part in the middle has now a large set of related documentation. Not only CAD data but also test information (how to test the product), compliance information and more.
  • The Part in the middle on its own also has a deeper EBOM structure which we will explore in an upcoming post.

I reached my 1000 words and do not want to write a book. So I will conclude this post. For experienced PLM implementers probably known information. For people entering the domain of PLM, either as a new student or coming from a more CAD/PDM background an interesting topic to follow. In the next post, I will continue towards the MBOM and ERP.

Let me know if this post is useful for you – and of course – enhancements or clarifications are always welcomed. Note: some of the functionality might not be possible in every PLM system depending on its origin and core data model

7years

Two weeks ago I got this message from WordPress, reminding me that I started blogging about PLM on May 22nd in 2008. During some of my spare time during weekends, I began to read my old posts again and started to fix links that have been disappearing.

Initially when I started blogging, I wanted to educate mid-market companies about PLM. A sentence with a lot of ambiguities. How do you define the mid-market and how do you define PLM are already a good start for a boring discussion. And as I do not want to go into a discussion, here are my “definitions”

Warning: This is a long post, full of generalizations and a conclusion.

PLM and Mid-market

The mid-market companies can be characterized as having a low-level of staff for IT and strategic thinking. Mid-market companies are do-ers and most of the time they are good in their domain based on their IP and flexibility to deliver this to their customer base. I did not meet mid-market companies with a 5-year and beyond business vision. Mid-market companies buy systems. They bought an ERP system 25-30 years ago (the biggest trauma at that time). They renewed their ERP system for the Y2K problem/fear and they switched from drawing board towards a 2D CAD system. Later they bought a 3D CAD system, introducing the need for a PDM system to manage all data.

PLM is for me a vision, a business approach supported by an IT-infrastructure that allows companies to share and discover and connect product related information through the whole lifecycle. PLM enables companies to react earlier and better in the go-to-market process. Better by involving customer inputs and experience from the start in the concept and design phases. Earlier thanks to sharing and involving other disciplines/suppliers before crucial decisions are made, reducing the amount of iterations and the higher costs of late changes.

PLM_profSeven years ago I believed that a packaged solution, combined with a pre-configured environment and standard processes would be the answer for mid-market companies. The same thought currently PLM vendors have with a cloud-based solution. Take it, us it as it is and enjoy.

Here I have changed my opinion in the past seven years. Mid-market companies consider PLM as a more complex extension of PDM and still consider ERP (and what comes with that system) as the primary system in the enterprise. PLM in mid-market companies is often seen as an engineering tool.

LESSON 1 for me:
The benefits of PLM are not well-understood by the mid-market

To read more:

PLM for the mid-market – mission impossible?

PLM for the SMB – a process or culture change ?

Culture change in a mid-sized company – a management responsibility

Mid-market PLM – what did I learn in 2009 ?

Implementing PLM is a change not a tool

Mid-market deadlocks for PLM

Who decides for PLM in a mid-market company ?

More on: Who decides for PLM in a mid-market company ?

Globalization and Education

globalIn the past seven years, globalization became an important factor for all type of companies. Companies started offshoring labor intensive work to low-labor-cost countries introducing the need for sharing product data outside their local and controlled premises. Also, acquisitions by larger enterprises and by some of the dominant mid-market companies, these acquisitions introduced a new area of rethinking. Acquisitions introduced discussions about: what are real best practices for our organization? How can we remain flexible, meanwhile adapt and converge our business processes to be future ready?

Here I saw two major trends in the mid-market:

Lack of (PLM) Education

dummies_logoTo understand and implement the value of PLM, you need to have skills and understanding of more than just a vendor-specific PLM system. You need to understand the basics of change processes (Engineering Change Request, Engineering Change Order, Manufacturing Change Order and more). And you need to understand the characteristics of a CAD document structure, a (multidisciplinary) EBOM, the MBOM (generic and/or plant specific) and the related Bill of Processes. This education does not exist in many countries and people are (mis-)guided by their PLM/ERP vendor, explaining why their system is the only system that can do the job.

Interesting enough the most read posts on my blog are about the MBOM, the ETO, BTO and CTO processes. This illustrates there is a need for a proper, vendor-independent and global accepted terminology for PLM

Some educational posts:

Bill of Materials for Dummies – ETO  ranked #1

ECR/ECO for Dummies ranked #2

BOM for Dummies – CTO  ranked #4

BOM for Dummies: BOM and CAD  ranked #7

BOM for Dummies – BTO

Where does PLM start beyond document management ?

The dominance of ERP

swissAs ERP systems were introduced long before PLM (and PDM), these systems are often considered by the management of a mid-market company as the core. All the other tools should be (preferably) seen as an extension of ERP and if possible, let´s implement ERP vendor´s functionality to support PLM – the Swiss knife approach – one tool for everything. This approach is understandable as at the board level there are no PLM discussions. Companies want to keep their “Let´s do it”-spirit and not reshuffle or reorganize their company, according to modern insights of sharing. Strangely enough, you see in many businesses the initiative to standardize on a single ERP system first, instead of standardizing on a single PLM approach first. PLM can bring the global benefits of product portfolio management and IP-sharing, where ERP is much more about local execution.

LESSON 2:
PLM is not understood at the board level, still considered as a tool

Some post related to PLM and ERP

Where is the MBOM ?  ranked #3

Connecting PLM and ERP (post 1)(post 2)(post 3) ranked #8

Can ERP vendors do PLM ?

PLM and ERP – the culture change

PLM and ERP – continued

5 reasons not to implement PLM – Reason #3 We already have an ERP system

The human factor

whyworryA lot of the reasons why PLM has the challenge to become successful have to do with its broad scope. PLM has an unclear definition and most important, PLM forces people to share data and work outside their comfort zones. Nobody likes to share by default. Sharing makes day-to-day life more complicated, sharing might create visibility on what you actually contribute or fix. In many of my posts, I described these issues from various viewpoints: the human brain, the innovators dilemma, the way the older generation (my generation) is raised and used to work. Combined with the fact that many initial PLM/PDM implementations have created so many legacies, the need to change has become a risk. In the discussion and selection of PLM I have seen many times that in the end a company decides to keep the old status quo (with new tools) instead of really having the guts to move toward the future. Often this was a result of investors not understanding (and willing to see) the long term benefits of PLM.

LESSON 3:
PLM requires a long-term vision and understanding, which most of the time does not fit current executive understanding (lack of education/time to educate) and priority (shareholders)

Many recent posts are about the human factor:

The Innovator´s dilemma and PLM

Our brain blocks PLM acceptance

PLM and Blockers

The PLM paradox for 2015

PLM and Global Warming

Τα πάντα ρεί

PLM is doomed, unless ……

How to get users excited or more committed to a new PLM system?

The digital transformation

econimistThe final and most significant upcoming change is the fact that we are entering a complete new era: From linear and  predictable towards fast and iterative, meaning that classical ways we push products to the market will become obsolete. The traditional approach was based on lessons learned from mechanical products after the second world-war. Now through globalization and the importance of embedded software in our products, companies need to deliver and adapt products faster than the classical delivery process as their customers have higher expectations and a much larger range to choose from. The result from this global competitiveness is that companies will change from delivering products towards a more-and-more customer related business model (continuous upgrades/services). This requires companies to revisit their business and organization, which will be extremely difficult. Business wise and human change require new IT concepts – platform? / cloud services? / Big data?

Older enterprises, mid-market and large enterprises will be extremely challenged to make this change in the upcoming 10 years. It will be a matter of survival and I believe the Innovator´s Dilemma applies here the most.

LESSON 4:
The digital transformation is apparent as a trend for young companies and strategic consultants. This message is not yet understood at the board level of many businesses.

 

Some recent post related to this fast upcoming trend:

From a linear world to fast and circular ?

Did you notice PLM is changing?

Documents or Intelligent Data ?

The difference between files and data-oriented – a tutorial (part 1)(part 2)(part 3)

PLM is dead, long live …… ?

PLM, Soccer and game changing

PLM and/or SLM? – (part 1)(part 2)

Breaking down the silos with data

ROI (Return On Investment)

No_roiI also wrote about ROI – a difficult topic to address as in most discussions related to ROI, companies are talking about the costs of the implementation, not about the tremendous larger impact a new business approach or model can have, once enabled through PLM. Most PLM ROI discussions are related to efficiency and quality gains, which are significant and relevant. However these benefits are relative small and not comparable with the ability to change your business (model) to become more customer centric and stay in business.

Some of the ROI posts:

To PLM or Not to PLM – measuring the planning phase  ranked #5

Free PLM Software does not help companies  ranked #6

PLM: What is the target?

PLM selection–additional thoughts

PLM Selection: Proof Of Concept observations

Where is my PLM Return On Investment (ROI) ?

A PLM success story with ROI

Conclusion

A (too) long post this time however perhaps a good post to mark 7 years of blogging and use it as a reference for the topics I briefly touched here. PLM has many aspects. You can do the further reading through the links.

From the statistics it is clear that the education part scores the best – see rankings. For future post, let me know by creating a comment what you are looking for in this blog: PLM Mid-Market, Education, PLM and ERP, Business Change, ROI, Digitalization, or …??

Also I have to remain customer centric – thanks for reading and providing your feedback

nochangecartoon

Above Image courtesy of the marketoonist.com – Tom Fishburne
Image related to digital transformation: The Economist – the onrushing wave

image

Two weeks ago I attended the Nobletek PLM forum in Belgium, where a group of experts, managers and users discussed topics related to my favorite theme: “Is PLM changing? “

Dick Terleth (ADSE) lead a discussion with title “PLM and Configuration Management as a proper profession” or "How can the little man grow?". The context of the discussion was related to the topic: “How is it possible that the benefits of PLM (and Configuration Management) are not understood at C-level?” or with other words: “Why is the value for Configuration Management and PLM not obvious?”.

In my previous post, PLM is doomed unless …., I quoted Ed Lopategui (www.eng-eng.com), who commented that being a PLM champion (or a Configuration Management expert as Dick Terleth would add) is bad for your career. Dick Terleth asked the same question, showing pictures of the self-assured accountant and the Configuration Management or PLM professional. (Thanks Dick for the pictures). Which job would you prefer?

image

The PLM ROI discussion

No_roiA first attempt to understand the difference could be related to the ROI discussion, which seems to be only applicable for PLM. Apparently ERP and financial management systems are a must for companies. No ROI discussion here. Persons who can control/report the numbers seem to have the company under control. For the CEO and CFO the value of PLM is often unclear. And to make it worse, PLM vendors and implementers are fighting for their unique definition of PLM so we cannot blame companies to be confused. This makes it clear that if you haven´t invested significant time to understand PLM, it will be hard to see the big picture. And at C-level people do not invest significant time to understand the topic. It is the C-level´s education, background or work experience that make him/her decide.

So if the C-level is not educated on PLM, somebody has to sell the value to them. Oleg Shilovitsky wrote about it recently in his post Why is it hard to sell PLM ROI and another respected blogger, Joe Barkai, sees the sun come up behind the cloud, in his latest post PLM Service Providers Ready To Deliver Greater Value. If you follow the posts of independent PLM bloggers (although who is 100 % independent), you will see a common understanding that implementing PLM currently requires a business transformation as old processes were not designed for a modern infrastructure and digital capabilities.

PLM is about (changing) business processes

imageBack to the Nobletek PLM forum. Douglas Noordhoorn, the moderator of the forum challenged the audience stating that PLM has always been there (or not there – if you haven´t discovered it). It is all about managing the product development processes in a secure way. Not talking about “Best Practices” but “Good practices." Those who had a proper education in the aerospace industry learned that good processes are crucial to deliver planes that can fly and are reliable.

Of course, the aerospace industry is not the same as other industries. However, more and more other industries in my network, like Nuclear new build, the construction industry or other Engineering, Procurement and Construction companies want to learn from aerospace and automotive good practices. They realize they are losing market share due to the fact that the cost of failure combined with relative high labor costs makes them too expensive. But from where to they get their proper good practices education?

The PLM professional?

myplmAnd this was an interesting point coming up from the Nobletek forum. There is no proper, product agnostic education for PLM (anymore). If you study logistics, you will learn a lot about various processes and how they can be optimized for a certain scenario. When you study engineering, there is a lot of focus on engineering disciplines and methods. But there is no time to educate engineers in-depth to understand the whole product development process and how to control it. Sometimes I give a guest lecture to engineering classes. It is never an important part of the education.

To become a PLM professional

imageFor those who never had any education in standard engineering processes, there is Frank Watts Engineering control book, which probably would be a good base. But it is not the PLM professional only that should be aware, of the good practices. Moreover, all companies manufacturing products, plants or buildings should learn these basics. As a side step, it would make a discussion around BIM more clear. At this time, manufacturing companies are every time discovering their good practices in the hard way.

And when this education exists, companies will be aware that it is not only about the tools, but it is the way the information is flowing through the organization. Even there is a chance that somewhere at C-level someone has been educated and understands the value. For ERP everyone agrees. For PLM, it remains a labyrinth of processes designed by companies learning on the job currently. Vendors and implementers pushing what they have learned. Engineering is often considered as a hard-to-manage discipline. As a SAP country manager once said to me: “Engineers are actually resources that do not want be managed, but we will get them …..”

And then the future ……

PLM bookI support the demand for a better education in engineering processes especially for industries outside aerospace or automotive. I doubt if it will have a significant impact although it might create the visibility and understanding for PLM at C-level. No need anymore for the lone ranger who fights for PLM. Companies will have better educated people that understand the need for good practices that exist. These good practices will be the base for companies when discussing with PLM vendors and implementers. Instead of vendors and implementers pushing their vision, you can articulate, and follow your vision.

However, we need a new standard book too. We are currently in the middle of a big change. Thanks to modern technology and connectivity the world is changing. I wrote and spoke about it in: Did you notice PLM is changing?

doc2dataThis is a change of generations and concepts which have not been foreseen by Frank Watts and others. What will be the new standard for data-centric companies instead of document based control?

The digital revolution is here (Industry 4.0), and here (digital revolution), and here (the third industrial revolution).

 

This awareness needs to become visible at C-level.
Who will educate them ??

 

spain_nl

Now back to soccer – 4 years ago Spain-The Netherlands was the last match – the final. Now it is the first match for them – will the Dutch change the game ?

%d bloggers like this: