You are currently browsing the category archive for the ‘MBOM’ category.

Last week I was happy to attend the PLM Roadmap / PDT Fall 2020 conference as usual organized by CIMdata and Eurostep. I wrote about the recent PI DX conference, which touched a lot on the surface of PLM and Digital Transformation. This conference is really a conference for those who want to understand the building blocks needed for current and future PLM.

In this conference, usually with approximately 150 users on-site, now with over 250 connected users for 3 (half) days. Many of us, following every session of the conference. As an active participant in the physical events, it was a little disappointing not to be in the same place with the other participants this time. The informal network meetings in this conference have always been special thanks to a relatively small but stable group of experts.  Due to the slightly reduced schedule, there was this time, less attention for some of the typical PDT-topics most of the time coming from Sweden and related to sustainability.

The conference’s theme was Digital Thread—the PLM Professionals’ Path to Delivering Innovation, Efficiency, and Quality and might sound like a marketing statement.  However, the content presented was much more detailed than just marketing info. The fact that you watched the presentation on your screen made it an intense conference with many valuable details.

Have a look at the agenda, and I will walk you through some of the highlights for me. As there was so much content to discuss, I will share this time part 1. Next week, in part 2, you will see the coherence of all the presentations.

As if there was a Coherent Thread.

Digital Twin, It Requires a Digital Thread

Peter Bilello, President & CEO, CIMdata, ‘s keynote with the title Digital Twin, It Requires a Digital Thread was immediately an illustration of discussing reality.  When I stated at the Digital Twin conference in the Netherlands that “Digital Twins do not run on Documents“, it had the same meaning as when Peter stated,” A Digital Twin without a Digital Thread is an orphan”.

Digital Thread

And Peter’s statement, “All companies do PLM, most of the time however disconnected”, is another way to stimulate companies working in a connected manner.

As usual Peter’s session was a good overview of the various aspect related to the Digital Thread and Digital Twin.

Digital Twin

The concept of a virtual twin is not new. The focus is as mentioned before now more on the term “Connected” Peter provided the CIMdata definition for Digital Thread and Digital Twin. Click on the images to the left to read the full definition.

Peter’s overview also referred to the Boeing Diamond, illustrating the mapping of the physical and virtual world, connected through a Digital Thread the various Digital Twins that can exist. The Boeing Diamond was one of the favorites during the conference.

When you look at Peter’s conclusions, there is an alignment with what I wrote in the post: A Digital Twin for Everyone and the fact that we need to strive for a connected enterprise. Only then we can benefit from a Digital Twin concept.

 

The Multi-view BOM Solution Evaluation
– Process, Results, and Industry Impacts

The reports coming from the various A&D PLM action groups are always engaging sessions to watch. Here, nine companies, even competitors, discuss and explore PLM themes between themselves supported by CIMdata.

These companies were the first that implemented PLM; it is interesting to watch how they move forward like supertankers. They cannot jump from one year to another year on a new fashionable hype. Their PLM-infrastructure needs to be consistent and future-proof due to their data’s longevity and the high standards for regulatory compliance and safety.

However, these companies are also pioneers for the future. They have been practicing Model-Based approaches for over ten years already and are still learning. In next week’s post, you will read later that these frontrunners are pushing for standards to make a Model-Based future affordable and achievable.

In that context, the action group Multi-View BOM shared their evaluation results for a study related to the multi-view BOM. A year ago, I wrote about this topic when Fred Feru from Airbus presented the intermediate results at the CIMdata Roadmap/PDT 2019 conference.

Dan Ganser (Gulfstream) and Javier Reines (Airbus) presented the findings. The conclusion was that the four vendors evaluated, i.e., Aras, Dassault Systems, PTC and Siemens, all passed the essential requirements and use cases. You can find the report and the findings here: Multi-view Bill of Materials

One interesting remark.

When the use cases were evaluated, the vendors could score on a level from 0 to 5, see picture. Interesting to see that apparently, it was possible to exceed the requirement, something that seems like a contradiction.

In particular, in this industry, where formal requirements management is a must – either you meet a requirement or not.

Dan Ganser explained that the current use cases were defined based on the minimum expectations, therefore there was the option to exceed the requirement. I still would be curious to see what does it mean to exceed the requirement. Is it usability, time, or something innovative we might have missed?

 

5G for Digital Twins & Shadows

I learned a lot from the presentation from Niels Koenig, working at the Fraunhofer Institute for Production Technology. Niels explained how important 5G is for realizing the Industry 4.0 targets. At the 5G Industry Campus, several projects are running to test and demonstrate the value of 5G in relation to manufacturing.

If you want to get an impression of the 5G Industry Campus – click on the Youube movie.

One of the examples Niels discussed was closed-loop manufacturing. Thanks to the extremely low latency (< 1ms), a connected NC machine can send real-time measurements to be compared with the expected values. For example, in the case of resonance, the cutting might not be smooth. Thanks to the closed-loop, the operator will be able to interfere or adjust the operation. See the image below.

Digital Thread: Be Careful What you Wish For, It Just Might Come True

I was looking forward to Marc Halpern‘s presentation. Marc often brings a less technical viewpoint but a more business-related viewpoint to the discussion. Over the past ten years, there have been many disruptive events, most recently the COVID-pandemic.

Companies are asking themselves how they can remain resilient. Marc shared some of his thoughts on how Digital Twins and Digital Threads can support resilience.

In that context, Gartner saw a trend that their customers are now eagerly looking for solutions related to Digital Twin, Digital Thread, Model-Based Approaches, combined with the aim to move to the cloud. Related to Digital Thread and Digital Twin, most of Gartner’s clients are looking for traceability and transparency along the product lifecycle. Most Digital Twin initiatives focus on a twin of operational assets, particularly inside the manufacturing facility. Nicely linking to Niels Konig’s session related to 5G.

Marc stated that there seems to be a consensus that a Digital Thread is compelling enough for manufacturers to invest. In the end, they will have to. However, there are also significant risks involved. Marc illustrated the two extremes; in reality, companies will end up somewhere in the middle, illustrated later by Jeff Plant from Boeing. The image on the left is a sneaky preview for next week.

When discussing the Digital Thread, Marc again referred to it more as a Digital Net, a kind of connected infrastructure for various different threads based on the various areas of interest.

I show here a slide from Marc’s presentation at the PDT conference in 2018. It is more an artist’s impression of the same concept discussed during this conference again, the Boeing Diamond.

Related to the risk of implementing a Digital Thread and Digital Twin, Marc showed another artistic interpretation; The two extremes of two potential end states of Digital Thread investment. Marc shared the critical risks for both options.

For the Vendor Black Hole, his main points were that if you choose a combined solution, diminished negotiating power, higher implementation costs, and potentially innovative ideas might not be implemented as they are not so relevant for the vendor. They have the power!

As an example of combined solutions Marc mentioned, the recently announced SAP-Siemens partnership, the Rockwell Automation-PTC partnership, the Schneider Electric-Aveva-partnership, and the ABB-Dassault Systemes partnership.

Once you are in the black hole, you cannot escape. Therefore, Marc recommended making sure you do not depend on a few vendors for your Digital Twin infrastructure.

The picture on the left illustrates the critical risks of the Enterprise Architecture “Mess”. It is a topic that I am following for a long time. Suppose you have a collection of services related to the product lifecycle, like Workflow-services, 3D Modeling-services, BOM-services, Manufacturing-services.

Together they could provide a PLM-infrastructure.

The idea behind this is that thanks to openness and connectivity, every company can build its own unique enterprise architecture. No discussion about standard best practices. You build your company’s best practices (for the future, the current ?)

It is mainly promoted as a kind of bottom-up PLM. If you are missing capabilities, just build them yourselves, using REST-services, APIs, using Low-Code platforms. It seems attractive for the smaller enterprises, however most of the time, only a short time. I fully concur with Marc’s identified risks here.

As I often illustrated in presentations related to a digital future, you will need a mix of both. Based on your point of focus, you could imagine five major platforms being connected together to cover all aspects of a business. Depending on your company’s business model and products, one of them might be the dominant one. With my PLM-focus, this would be the Product Innovation Platform, where the business is created.

Marc ended with five priorities to enable a long-term Digital Thread success.

  • First of all – set the ground rules for data governance. A topic often mentioned but is your company actively engaging on that already?
  • Next, learn from Model-Based Systems Engineering as a foundation for a Model-Based Enterprise.  A topic often discussed during the previous CIMdata Roadmap / PDT-conference.
  • The change from storing and hiding information in siloes towards an infrastructure and mindset of search and access of data, in particular, the access to Bill of Materials

The last point induced two more points.

  • The need for an open architecture and standards. We would learn more on this topic on day 3 of the conference.
  • Make sure your digital transformation sticks within the organization by investing and executing on organizational change management.

Conclusion

The words “Digital Thread” and “Digital Twin” are mentioned 18 times in this post and during the conference even more. However, at this conference, they were not hollow marketing terms. They are part of a dictionary for the future, as we will see in next week’s post when discussing some of the remaining presentations.

Closing this time with a point we all agreed upon: “A Digital Twin without a Digital Thread is an orphan”. Next week more!

In the series learning from the past to understand the future, we have almost reached the current state of PLM before digitization became visible. In the last post, I introduced the value of having the MBOM preparation inside a PLM-system, so manufacturing engineering can benefit from early visibility and richer product context when preparing the manufacturing process.

Does everyone need an MBOM?

It is essential to realize that you do not need an EBOM and a separate MBOM in case of an Engineering To Order primary process. The target of ETO is to deliver a unique customer product with no time to lose. Therefore, engineering can design with a manufacturing process in mind.

The need for an MBOM comes when:

  • You are selling a specific product over a more extended period of time. The engineering definition, in that case, needs to be as little as possible dependent on supplier-specific parts.
  • You are delivering your portfolio based on modules. Modules need to be as long as possible stable, therefore independent of where they are manufactured and supplier-specific parts. The better you can define your modules, the more customers you can reach over time.
  • You are having multiple manufacturing locations around the world, allowing you to source locally and manufacture based on local plant-specific resources. I described these options in the previous post

The challenge for all companies that want to move from ETO to BTO/CTO is the fact that they need to change their methodology – building for the future while supporting the past. This is typically something to be analyzed per company on how to deal with the existing legacy and installed base.

Configurable EBOM and MBOM

In some previous posts, I mentioned that it is efficient to have a configurable EBOM. This means that various options and variants are managed in the same EBOM-structure that can be filtered based on configuration parameters (date effectivity/version identifier/time baseline). A configurable EBOM is often called a 150 % EBOM

The MBOM can also be configurable as a manufacturing plant might have almost common manufacturing steps for different product variants. By using the same process and filtered MBOM, you will manufacture the specific product version. In that case, we can talk about a 120 % MBOM

Note: the freedom of configuration in the EBOM is generally higher than the options in the configurable MBOM.

The real business change for EBOM/MBOM

So far, we have discussed the EBOM/MBOM methodology. It is essential to realize this methodology only brings value when the organization will be adapted to benefit from the new possibilities.

One of the recurring errors in PLM implementations is that users of the system get an extended job scope, without giving them the extra time to perform these activities. Meanwhile, other persons downstream might benefit from these activities. However, they will not complain. I realized that already in 2009, I mentioned such a case: Where is my PLM ROI, Mr. Voskuil?

Now let us look at the recommended business changes when implementing an EBOM/MBOM-strategy

  1. Working in a single, shared environment for engineering and manufacturing preparation is the first step to take.

Working in a PLM-system is not a problem for engineers who are used to the complexity of a PDM-system. For manufacturing engineers, a PLM-environment will be completely new. Manufacturing engineers might prepare their bill of process first in Excel and ultimately enter the complete details in their ERP-system. ERP-systems are not known for their user-friendliness. However, their interfaces are often so rigid that it is not difficult to master the process. Excel, on the other side, is extremely flexible but not connected to anything else.

And now, this new PLM-system requires people to work in a more user-friendly environment with limited freedom. This is a significant shift in working methodology. This means manufacturing engineers need to be trained and supported  over several months. Changing habits and keep people motivated takes energy and time. In reality, where is the budget for these activities?  See my 2016 post: PLM and Cultural Change Management – too expensive?

  1. From sequential to concurrent

Once your manufacturing engineers are able to work in a PLM-environment, they are able to start the manufacturing definition before the engineering definition is released. Manufacturing engineers can participate in design reviews having the information in their environment available. They can validate critical manufacturing steps and discuss with engineers potential changes that will reduce the complexity or cost for manufacturing. As these changes will be done before the product is released, the cost of change is much lower. After all, having engineering and manufacturing working partially in parallel will reduce time to market.

Reducing time to market by concurrent engineering

One of the leading business drivers for many companies is introducing products or enhancements to the market. Bringing engineering and manufacturing preparation together also means that the PLM-system can no longer be an engineering tool under the responsibility of the engineering department.

The responsibility for PLM needs to be at a level higher in the organization to ensure well-balanced choices. A higher level in the organization automatically means more attention for business benefits and less attention for functions and features.

From technology to methodology – interface issues?

The whole EBOM/MBOM-discussion often has become a discussion related to a PLM-system and an ERP-system. Next, the discussion diverted to how these two systems could work together, changing the mindset to the complexity of interfaces instead of focusing on the logical flow of information.

In an earlier PI Event in München 2016, I lead a focus group related to the PLM and ERP interaction. The discussion was not about technology, all about focusing on what is the logical flow of information. From initial creation towards formal usage in a product definition (EBOM/MBOM).

What became clear from this workshop and other customer engagements is that people are often locked in their siloed way of thinking. Proposed information flows are based on system capabilities, not on the ideal flow of information. This is often the reason why a PLM/ERP-interface becomes complicated and expensive. System integrators do not want to push for organizational change, they prefer to develop an interface that adheres to the current customer expectations.

SAP has always been promoting that they do not need an interface between engineering and manufacturing as their data management starts from the EBOM. They forgot to mention that they have a difficult time (and almost no intention) to manage the early ideation and design phase. As a Dutch SAP country manager once told me: “Engineers are resources that do not want to be managed.” This remark says all about the mindset of ERP.

After overlooking successful PLM-implementations, I can tell the PLM-ERP interface has never been a technical issue once the methodology is transparent. A company needs to agree on logical data flow from ideation through engineering towards design is the foundation.

It is not about owning data and where to store it in a single system. It is about federated data sets that exist in different systems and that are complementary but connected, requiring data governance and master data management.

The SAP-Siemens partnership

In the context of the previous paragraph, the messaging around the recently announced partnership between SAP and Siemens made me curious. Almost everyone has shared an opinion about the partnership. There is a lot of speculation, and many questions were imaginarily answered by as many blog posts in the field. Last week Stan Przybylinski shared CIMdata’s interpretations in a webinar Putting the SAP-Siemens Partnership In Context, which was, in my opinion, the most in-depth analysis I have seen.

For what it is worth, my analysis:

  • First of all, the partnership is a merger of slide decks at this moment, aiming to show to a potential customer that in the SAP/Siemens-combination, you find everything you need. A merger of slides does not mean everything works together.

  • It is a merger of two different worlds. You can call SAP a real data platform with connected data, where Siemens offering is based on the Teamcenter backbone providing a foundation for a coordinated approach. In the coordinated approach, the data flexibility is lower. For that reason, Mendix is crucial to make Siemens portfolio behave like a connected platform too.
    You can read my doubts about having a coordinated and connected system working together (see image above). It was my #1 identified challenge for this decade: PLM 2020 – PLM the next decade (before COVID-19 became a pandemic and illustrated we need to work connected)
  • The fact that SAP will sell TC PLM and Siemens will sell SAP PPM seems like loser’s statement, meaning our SAP PLM is probably not good enough, or our TC PPM capabilities are not good enough. In reality, I believe they both should remain, and the partnership should work on logical data flows with data residing in two locations – the federated approach. This is how platforms reside next to each other instead of the single black hole.

  • The fact that standard interfaces will be developed between the two systems is a subtle sales argument with relatively low value. As I wrote in the “from technology to methodology”-paragraph, the challenges are in the organizational change within companies. Technology is not the issue, although system integrators also need to make a living.
  • What I believe makes sense is that both SAP and Siemens, have to realize their Industry 4.0 end-to-end capabilities. It is a German vision now for several years and it is an excellent vision to strive for. Now it is time to build the two platforms working together. This will be a significant technical challenge mainly for Siemens as its foundation is based on a coordinated backbone.
  • The biggest challenge, not only for this partnership, is the organizational change within companies that want to build an end-to-end connected solution. In particular, in companies with a vast legacy, the targeted industries by the partnership, the chasm between coordinated legacy data and intended connected data is enormous. Technology will not fix it, perhaps smoothen the pain a little.

 

Conclusion

With this post, we have reached the foundation of the item-centric approach for PLM, where the EBOM and MBOM are managed in a real-time context. Organizational change is the biggest inhibitor to move forward. The SAP-Siemens partnership is a sales/marketing approach to create a simplified view for the future at C-level discussions.
Let us watch carefully what happens in reality.

Next time potentially the dimension of change management and configuration management in an item-centric approach.
Or perhaps Martijn Dullaart will show us the way before, following up on his tricky poll question

 

Already five posts since we started looking at the roots of PLM, where every step illustrated that new technical capabilities could create opportunities for better practices. Alternatively, sometimes, these capabilities introduced complexity while maintaining old practices.  Where the previous posts were design and engineering-centric, now I want to make the step moving to manufacturing-preparation and the MBOM. In my opinion, if you start to manage your manufacturing BOM in the context of your product design, you are in the scope of PLM.

For the moment, I will put two other related domains aside, i.e., Configuration Management and Configured Products. Note these domains are entirely different from each other.

Some data model principles

In part five, I introduced the need to have a split between a logical product definition and a technical EBOM definition. The logical product definition is more the system or modular structure to be used when configuring solutions for a customer. The technical EBOM definition is, most of the time, a stable engineering specification independent of how and where the product is manufactured. The manufacturing BOM (the MBOM) should represent how the product will be manufactured, which can vary per location and vary over time. Let us look in some of the essential elements of this data model

The Product

The logical definition of the product, which can also be a single component if you are a lower tier-supplier, has an understandable number, like 6030-10B. A customer needs to be able to order this product or part without a typo mistake. The product has features or characteristics that are used to sell the product. Usually, products do not have a revision, as it is a logical definition of a set of capabilities. Most of the time, marketing is responsible for product definition. This would be the sales catalog, which can be connected in a digital PLM environment. Like the PDM-ERP relation, there is a similar discussion related to where the catalog resides—more on the product side later in time.

The EBOM

Related to the product or component in the logical definition, there is an actual EBOM, which represents the technical specification of the product. The image above shows the relation represented by the blue “current” link.

Note: not all systems will support such a data model, and often the marketing sides in managed disconnected from the engineering side. Either in Excel or in a specialized Product Line Engineering (PLE) tools.

We discussed in the previous post that if you want to minimize maintenance, meaning fewer revisions on your EBOM, you should not embed manufacturer-specific parts in your EBOM.

The EBOM typically contains purchase parts and make parts. The purchased parts are sourced based on their specification, and you might have a single source in the beginning. The make parts are entirely under your engineering control, and you define where they are produced and by whom. For the rest, the EBOM might have functional groupings of modules and subassemblies that are defined for reuse by engineering.

Note: An EBOM is the place where multidisciplinary collaboration comes together. This post mainly deals with the mechanical part (as we are looking at the past)

Note: An EBOM can contain multiple valid configurations which you can filter based on a customer or market-specific demand. In this case, we talk about a Configured EBOM or a 150 % EBOM.

The MBOM

The MBOM represents the way the unique product is going to be manufactured. This means the MBOM-structure will represent the manufacturing steps. For each EBOM-purchase-part, the approved manufacturer for that plant needs to be selected. For each make-part in the EBOM, if made in this plant per customer order, the EBOM parts need to be resolved by one or more manufacturing steps combined with purchased materials.

Let us look at some examples:

The flat MBOM

Some companies do not have real machinery anymore in their plants, the product they deliver to the market is only assembled at the best financial location. This means that all MBOM-parts should arrive at the shop floor to be assembled there.  As an example, we have plant A below.

Of course, this is a simplified version to illustrate the basics of the MBOM. The flat MBOM only makes sense if the product is straightforward to assemble. Based on the engineering specifications, the assembly drawing(s) people on the shop floor will know what to do.

The engineering definition specifies that the chassis needs to be painted, and fitting the axles requires grease. These quantities are not visible in the EBOM; they will appear in the MBOM. The quantities and the unit of measure are, of course, relevant here.

Note: The exact quantities for paint and grease might be adjusted in the MBOM when a series of Squads have been manufactured.

The MBOM and Bill of Process

Most of the time, a product is manufactured in several process steps. For that reason, the MBOM is closely related to the Bill of Process or the Routing definitions. The image below illustrates the relationship between an MBOM and the operations in a plant.

If we continue with our example of the Squad, let us now assume that the wheels and the axle are joined together in a work cell. In addition, the chassis is painted in a separate cell. The MBOM would look like the image below:

In the image, we see that the same Engineering definition now results in a different MBOM. A company can change the MBOM when optimizing the production, without affecting the engineering definition. In this MBOM, the Axle assembly might also be used in other squads manufactured by the company.

The MBOM and purchased parts

In the previous example, all components for the Squad were manufactured by the same company with the option to produce in Plant A or in Plant B.  Now imagine the company also has a plant C in a location where they cannot produce the wheels and axle assembly. Therefore plant C has to “purchase” the Wheel-Axle assembly, and lucky for them plant B is selling the Wheel+Axle assembly to the market as a product.

The MBOM for plant C would look like the image below:

For Plant C, they will order the right amount of the Wheel+Axle product, according to its specifications (HF-D240). How the Wheel+Axle product is manufactured is invisible for Plant C, the only point to check is if the Wheel+Axle product complies with the Engineering Definition and if its purchase price is within the target price range.

Why this simple EBOM-MBOM story?

For those always that have been active in the engineering domain, a better understanding of the information flow downstream to manufacturing is crucial. Historically this flow of information has been linear – and in many companies, it is still the fact. The main reason for that lies in the fact that engineering had their own system (PDM or PLM), and manufacturing has their own system (ERP).

Engineers did their best to provide the best engineering specification and release the data to ERP. In the early days, as discussed in Part 4, the engineering specification was most of the time based on a kind of hybrid BOM containing engineering and manufacturing parts already defined.

Next, manufacturing engineering uses the engineering specifications to define the manufacturing BOM in the ERP system. Based on the drawings and parts list, they create a preferred manufacturing process (MBOM and BOP) – most of the time, a manual process.  Despite the effort done by engineering, there might be a need to change the product. A different shape or dimension make manufacturing more efficient or done with existing tooling. This means an iteration, which causes delays and higher engineering costs.

The first optimization invented was the PDM-ERP interface to reduce the manual work and introduction of typos/misunderstanding of data.  This topic was “hot” between 2000 and 2010, and I visited many SmarTeam customers and implementers to learn and later explain that this is a mission impossible. The picture below says it all.

We have an engineering BOM (with related drawings). Through an interface, this EBOM will be restructured into a manufacturing BOM, thanks to all kinds of “clever” programming based on particular attributes.  Discussed in Part 3

The result, however, was that the interface was never covering all situations and became the most expensive part of the implementation.

Good business for the implementing companies, bad for the perception of PDM/PLM.

The lesson learned from all these situations: If you have a PLM-system that can support both the EBOM and MBOM in the same environment, you do not need this complex interface anymore. You can still use some automation to move from an EBOM to an MBOM.

However, three essential benefits come from this approach

  1. Working in a single environment allows manufacturing engineers to work directly in the context of the EBOM, proposing changes to engineering in the same environment and perform manual restructuring on the MBOM as programming logic does not exist. Still, compare tools will ensure all EBOM-parts are resolved in the manufacturing definition.
  2. All product Intellectual Property is now managed in a single environment. There is no scattered product information residing in local ERP-systems. When companies moved towards multiple plants for manufacturing, there was the need for a centralized generic MBOM to be resolved for the local plant (local suppliers / local plant conditions). Having the generic MBOM and Bill of Process in PLM was the solution.
  3. When engineers and manufacturing engineers work in the same environment, manufacturing engineering can start earlier with the manufacturing process definition, providing early feedback to engineering even when the engineering specification has not been released. This approach allows real concurrent engineering, reducing time to market and cost significantly

Conclusion

Again 1600 words this time. We are now at the stage that connecting the EBOM and the MBOM in PLM has become a best practice in most standard PLM-systems. If implemented correctly, the interface to ERP is no longer on the critical path – the technology never has been the limitation – it is all about methodology.

Next time a little bit more on advanced EBOM/MBOM interactions

 

 

 

Two weeks ago, I wrote about the PLM Innovation Forum, a virtual conference organized by TECHNIA, where I described some of my experiences with the event and the different ways of interaction in a virtual conference.

The content remains available till May 31st, so I had time to stroll through the rich content offered. In particular, if you are already familiar with the Dassault Systèmes & TECHNIA offerings, the content is extremely rich.

From the “auditorium“, I selected four presentations that have a logical relation to each other. I believe they will help you understand some of the aspects of PLM independent of the PLM vendor. Let’s start.

Value-Driven Implementation

In this session, Johannes Storvik, you can identify three parts. In the first part, Johannes talks about how to select the best PLM-approach, discussing the various options from custom, standardized, or even fully Out-Of-The-Box, comparing these options with building types. An interesting comparison, however, there is a risk with this approach.

Many companies are now stating they only need a collection of Commercial of the Shelf (COTS) systems and prefer only OOTB. The challenge with this approach is that you start from the tools, constraining the business from the start.

I would state start from your business goals, and ultimately they will lead to requirements for the tools. And then, if available, you find solutions that require no or minor adaptation. Starting from the business is crucial, and Johannes elaborates more on that.

The second part discussing PLM benefits, and if you are looking for confirmation PLM brings value, have a look at the topics, areas, and numbers mentioned. Most benefits and areas are quite traditional, related to a coordinated organization (if you follow my coordinated to connected typology).

The last part, connecting the dots from business to enablers, a Benefits Dependency Network, is a methodology that I recommend. Originally developed by Cranfield School of Management, it allows you to connect your PLM-needs to the company’s business needs and strategies. You can read more about this methodology in this HBR article: A tool to map your next digital initiative.

Benefits Dependency Network: note the potential storyline you can build

My experience from this methodology is that it allows you to extract one, two perhaps three storylines. These storylines then help you to explain why the PLM enablers are needed connecting to a business case into one understandable storyline, suitable for all levels in the company

With Johannes, we went from PLM-characteristics towards connecting PLM to the business and exec management, making PLM implicit visible at the management level. Now the next step.

Industrialization of the Construction Industry

The theme of this session might be misleading. Arto Tolonen, from the LETHO group, has a long history in PLM as a practitioner and at the University of Oulu, where he specialized in Product Data Management and Product Portfolio Management.

The last part of his presentation is dealing with transformational thinking for the construction industry from a one-off construction towards thinking in repeatable processes, using PLM practices. With his dry humor, he asks:
“Why are all buildings prototypes ?” and more.

For many years, I have been preaching PLM practices to be valuable for other industries too. See this 2013 post: PLM for all industries?  The most common challenge was to respond to the question:  “What does your tool do?”   PLM practices only become valuable if you think in repeatable processes.

The exciting part is when Arto talks about the disconnect between the exec level in an organization and reality in the field. Understanding how products are performing, and how each product contributes to the profit of the company, is usually blurred with subjective information. Your company’s love baby might be the worst performer but never dropped from the product portfolio for sentimental reasons.

Arto explains the importance of (digital) portfolio management, connecting the economic data with the technical data. And by doing so, use portfolio management to drive the development of new offerings based on market needs and numbers. Or to decommission products.

I am fully aligned with Arto and believe that a digital transformation should include a connected product portfolio management environment, driving new development projects. Product Portfolio management is not the same as BOM-management.

The portfolio items are facing the outside world, your customers. How the products are built, is defined in the inside world of BOMs and design data.

Now combining product portfolio management with product management makes a lot of more sense if you are going to use it to support the modularization of your products. Based on solution platforms, you can design your products to become modular, leading to a lot of business benefits.

With Arto, we discovered the need to have digital portfolio management connecting business performance and product development. Another implicit reason for PLM to your business explained with humor. Now the next step.

Modularization

Closely related to product portfolio management is the topic of modularization.  If you want to optimize your offering with a great variety of choices for your customers, without spending more time to develop an individual solution, you need to implement modularization for your products.

Daniel Strandhammar van Brick Strategy explains this topic in his session. So many companies I am working with a claim that they want to move from and ETO (Engineering To Order) model to a CTO (Configure To Order) model. Unfortunately, many of them keep on talking about that without making steps towards more configurable products.

Although in many PLM-infrastructures, the capabilities exist to support the modularity of a product portfolio, it requires thinking and analysis outside the tools. The tools are there to support the modularization. Still, it depends on your engineering teams to transform the company’s portfolio step by step into a more modular product.  Brick Strategy is typical such a company that can help you and coach you in a modularization process.

If you look at the benefits Daniel is mentioning related to modularization, these benefits are significant. However, as Daniel also explains per type of business, the effects of modularization might be different, still in every situation worth to invest.

It is interesting to know that many of the modularization methodologies come from Scandinavian countries. Perhaps a region, with companies like Scania (master of modularization), IKEA and others leading the ways towards modularization. Is it a surprise that LEGO is also a Scandinavian company?

Daniel continues by explaining how a roadmap for modularization could look like. If you are struggling with that point, have a look at the video. It is a crucial part of the story.

Note: There is also a presentation from Anders Malmberg fro Scania talking about their Starling project. Not particularly related to modularization, more related to how to organize significant PLM transformations.

With Daniel’s presentation, we see the relation between a product portfolio and modularization. Another implicit reason for PLM to improve your business explained. Now let’s do it.

 

Making Multi-view BOM a reality

My ultimate dream was that James Roche from CIMdata would complete the storyline. We went from business initiatives through product portfolio management and modularization through a flow of organizational topics to enhance your business outcome using PLM.

With James, I was hoping we now would get the final necessary part, the need for a multi-view BOM, and how to establish this. As I mentioned before with modularization, many companies started with a kind of ETO-approach to deliver solutions for their customers. The downside of this approach is that, when designing a product, the manufacturing process was already leading the way the BOM will be structured. Many of the companies that I work with are in this situation. There is no clear EBOM and MBOM, the situation is a kind of hybrid BOM, blocking modularity and multi-plant manufacturing.

James’s presentation unfortunate started with a 10 min technical delay, and then the next part is crucial to understand. He explains nicely what it means to have a “hybrid” single BOM and more to a multi-view EBOM/MBOM. James addressed this topic, both using an example looking at it from a technological and organizational view.

As James is the CIMdata Practice Director for Aerospace & Defense, this was the industry in focus and even example provided above is not necessarily the best solution for every A&D company. Organizational change and managing risks are crucial in such a transition, and that is where James spent even more time. It would be great, and I consider it one of my next blog options, to discuss and share best practices for other types of industries. Is there always a need for a multi-view BOM and are they all the same?

With James we concluded the PLM value story, making it my fourth pick of the PLMIF conference, giving you an end-to-end storyline why PLM is important and how it is connected to your business results.

 

Conclusion

The four presentations that I highlighted here show a storyline that is crucial to understand and pitch when you talk about the business value of PLM. It is not about technical features and functions. It is part of a business strategy, building the right portfolio, manage it in a modular manner, and use multiple BOM views to optimize the delivery of your products.

 

Note: two more weeks to see the full presentations of PLMIF – go and have a look in case you haven’t done so: http://www.plmif.org

 

 

 

The digital thread according to GE

In my earlier posts, I have explored the incompatibility between current PLM practices and future needs for digital PLM.  Digital PLM is one of the terms I am using for future concepts. Actually, in a digital enterprise, system borders become vague, it is more about connected platforms and digital services. Current PLM practices can be considered as Coordinated where the future for PLM is aiming at Connected information. See also Coordinated or Connected.

Moving from current PLM practices towards modern ways of working is a transformation for several reasons.

  • First, because the scope of current PLM implementation is most of the time focusing on engineering. Digital PLM aims to offer product information services along the product lifecycle.
  • Second, because the information in current PLM implementations is mainly stored in documents – drawings still being the leading In advanced PLM implementations BOM-structures, the EBOM and MBOM are information structures, again relying on related specification documents, either CAD- or Office files.

So let’s review the transformation challenges related to moving from current PLM to Digital PLM

Current PLM – document management

The first PLM implementations were most of the time advanced cPDM implementations, targeting sharing CAD models and drawings. Deployments started with the engineering department with the aim to centralize product design information. Integrations with mechanical CAD systems had the major priority including engineering change processes. Multidisciplinary collaboration enabled by introducing the concept of the Engineering Bill of Materials (EBOM).  Every discipline, mechanical, electrical and sometimes (embedded) software teams, linked their information to the EBOM. The product release process was driven by the EBOM. If the EBOM is released, the product is fully specified and can be manufactured.

Although people complain implementing PLM is complex, this type of implementation is relatively simple. The only added mental effort you are demanding from the PLM user is to work in a structured way and have a more controlled (rigid) way of working compared to a directory structure approach. For many people, this controlled way of working is already considered as a limitation of their freedom. However, companies are not profitable because their employees are all artists working in full freedom. They become successful if they can deliver in some efficient way products with consistent quality. In a competitive, global market there is no room anymore for inefficient ways of working as labor costs are adding to the price.

The way people work in this cPDM environment is coordinated, meaning based on business processes the various stakeholders agree to offer complete sets of information (read: documents) to contribute to the full product definition. If all contributions are consistent depends on the time and effort people spent to verify and validate its consistency. Often this is not done thoroughly and errors are only discovered during manufacturing or later in the field. Costly but accepted as it has always been the case.

Next Step PLM – coordinated document management / item-centric

When the awareness exists that data needs to flow through an organization is a consistent manner, the next step of PLM implementations come into the picture. Here I would state we are really talking about PLM as the target is to share product data outside the engineering department.

The first logical extension for PLM is moving information from an EBOM view (engineering) towards a Manufacturing Bill of Materials (MBOM) view. The MBOM is aiming to represent the manufacturing definition of the product and becomes a placeholder to link with the ERP system and suppliers directly. Having an integrated EBOM / MBOM process with your ERP system is already a big step forward as it creates an efficient way of working to connect engineering and manufacturing.

As all the information is now related to the EBOM and MBOM, this approach is often called the item-centric approach. The Item (or Part) is the information carrier linked to its specification documents.

 

Managing the right version of the information in relation to a specific version of the product is called configuration management. And the better you have your configuration management processes in place, the more efficient and with high confidence you can deliver and support your products.  Configuration Management is again a typical example where we are talking about a coordinated approach to managing products and documents.

Implementing this type of PLM requires already more complex as it needs different disciplines to agree on a collective process across various (enterprise) systems. ERP integrations are technically not complicated, it is the agreement on a leading process that makes it difficult as the holistic view is often failing.

Next, next step PLM – the Digital Thread

Continuing reading might give you the impression that the next step in PLM evolution is the digital thread. And this can be the case depending on your definition of the digital thread. Oleg Shilovitsky recently published an article: Digital Thread – A new catchy phrase to replace PLM? related to his observations from  ConX18 illustrate that there are many viewpoints to this concept. And of course, some vendors promote their perfect fit based on their unique definition. In general, I would classify the idea of Digital Thread in two approaches:

The Digital Thread – coordinated

In the Digital Thread – coordinated approach we are not revolutionizing the way of working in an enterprise. In the coordinated approach, the PLM environment is connected with another overlay, combining data from various disciplines into an environment where the dependencies are traceable. This can be the Aras overlay approach (here explained by Oleg Shilovitsky), the PTC Navigate approach or others, using a new extra layer to connect the various discipline data and create traceability in a more or less non-intrusive way. Similar concepts, but less intrusive can be done through Business Intelligence applications, although they are more read-only than a system approach.

The Digital Thread – connected

In the Digital Thread – connected approach the idea is that information is stored in an extreme granular way and shared among disciplines. Instead of the coordinated way, where every discipline can have their own data sources, here the target is to be data-driven (neutral/standard formats). I described this approach in the various aspects of the model-based enterprise. The challenge of a connected enterprise is the standardized data definition to make it available for all stakeholders.

Working in a connected enterprise is extremely difficult, in particular for people educated in the old-fashioned ways of working. If you have learned to work with shared documents, like Google Docs or Office documents in sharing mode, you will understand the mental change you have to go through. Continuous sharing the information instead of waiting until you feel your part is complete.

In the software domain, companies are used to work this way and to integrate data in a continuous stream. We have to learn to apply these practices also to a complete product lifecycle, where the product consists of hardware and software.

Still, the connect way if working is the vision where digital enterprises should aim for as it dramatically reduces the overhead of information conversion, overhead, and ambiguity. How we will implement in the context of PLM / Product Innovation is a learning process, where we should not be blocked by our echo chamber as Jan Bosch states it in his latest post: Don’t Get Stuck In Your Company’s Echo Chamber

Jan Bosch is coming from the software world, promoting the Software-Centric Systems conference SC2 as a conference to open up your mind. I recommend you to take part in upcoming PLM related events: CIMdata’s PLM roadmap Europe combined with PDT Europe on 24/25th October in Stuttgart, or if you are living in the US there is the upcoming PI PLMx CHICAGO 2018 on Nov 5/6th.

Conclusion

Learning and understanding are crucial and takes time. A digital transformation has many aspects to learn – keep in mind the difference between coordinated (relatively easy) and connected (extraordinarily challenging but promising). Unfortunate there is no populist way to become digital.

Note:
If you want to continue learning, please read this post – The True Impact of Industry 4.0 Revealed  -and its internal links to reference information from Martijn Dullaart – so relevant.

 

In my series describing the best practices related to a (PLM) data model, I described the general principles, the need for products and parts, the relation between CAD documents and the EBOM, the topic of classification and now the sensitive relation between EBOM and MBOM.

First some statements to set the scene:

  • The EBOM represents the engineering (design) view of a product, structured in a way that it represents the multidisciplinary view of the functional definition of the product. The EBOM combined with its related specification documents, models, drawings, annotations should give a 100 % clear definition of the product.
  • The MBOM represents the manufacturing view of a product, structured in a way that represents the way the product is manufactured. This structure is most of the time not the same as the EBOM, due to the manufacturing process and purchasing of parts.

clip_image002

A (very) simplified picture illustrating the difference between an EBOM and a MBOM. If the Car was a diesel there would be also embedded software in both BOMs (currently hidden)

For many years, the ERP systems have claimed ownership of the MBOM for two reasons

  1. Historically the MBOM was the starting point for production. Where the engineering department often worked with a set of tools, the ERP system was the system where data was connected and used to have a manufacturing plan and real-time execution
    clip_image004
  2. To accommodate a more advanced integration with PDM systems, ERP vendors began to offer an EBOM capability also in their system as PDM systems often worked around the EBOM.

These two approaches made it hard to implement “real” PLM where (BOM) data is flowing through an organization instead of stored in a single system.

By claiming ownership of the BOM by ERP, some problems came up:

  • A disconnect between the iterative engineering domain and the execution driven ERP domain. The EBOM is under continuous change (unless you have a simple or the ultimate product) and these changes are all related to upstream information, specifications, requirements, engineering changes and design changes. An ERP system is not intended for handling iterative processes, therefore forcing the user to work in a complex environment or trying to fix the issue through heavy customization on the ERP side.
    clip_image006
  • Global manufacturing and outsourced manufacturing introduced a new challenge for ERP-centric implementations. This would require all manufacturing sites also the outsourced manufacturers the same capabilities to transfer an EBOM into a local MBOM. And how do you capitalize the IP from your products when information is handled in a dispersed environment?
    clip_image008

The solution to this problem is to extend your PDM implementation towards a “real” PLM implementation providing the support for EBOM, MBOM, and potential plant specific MBOM. All in a single system / user-experience designed to manage change and to allow all users to work in a global collaborative way around the product. MBOM information then will then be pushed when needed to the (local) ERP system, managing the execution.
clip_image010

Note 1: Pushing the MBOM to ERP does not mean a one-time big bang. When manufacturing parts are defined and sourced, there will already be a part definition in the ERP system too, as logistical information must come from ERP. The final push to ERP is, therefore, more a release to ERP combined with execution information (when / related to which order).

In this scenario, the MBOM will be already in ERP containing engineering data complemented with manufacturing data. Therefore from the PLM side we talk more about sharing BOM information instead of owning. Certain disciplines have the responsibility for particular properties of the BOM, but no single ownership.

Note 2: The whole concept of EBOM and MBOM makes only sense if you have to deliver repetitive products. For a one-off product, more a project, the engineering process will have the manufacturing already in mind. No need for a transition between EBOM and MBOM, it would only slow down the delivery.

Now let´s look at some EBOM-MBOM specifics

EBOM phantom assemblies

PhantomWhen extracting an EBOM directly from a 3D CAD structure, there might be subassemblies in the EBOM due to a logical grouping of certain items. You do not want to see these phantom assemblies in the MBOM as they only complicate the structuring of the MBOM or lead to phantom activities. In an EBOM-MBOM transition these phantom assemblies should disappear and the underlying end items should be linked to the higher level.

EBOM materials

In the EBOM, there might be materials like a rubber tube with a certain length, a strip with a certain length, etc. These materials cannot be purchased in these exact dimensions. Part of the EBOM to MBOM transition is to translate these EBOM items (specifying the exact material) into purchasable MBOM items combined with a fitting operation.

EBOM end-items (make)

For make end-items, there are usually approved manufacturers defined and it is desirable to have multiple manufacturers (certified through the AML) for make end-items, depending on cost, capacity and where the product needs to be manufactured. Therefore, a make end-item in the EBOM will not appear in a resolved MBOM.

EBOM end-items (buy)

For buy end-items, there is usually a combination of approved manufacturers (AML) combined with approved vendors (AVL). The approved manufacturers are defined by engineering, based on part specifications. Approved vendors are defined by manufacturing combined with purchasing based on the approved manufacturers and logistical or commercial conditions

Are EBOM items and MBOM items different?

MBOM-MOBMThere is a debate if EBOM items should/could appear in an MBOM or that EBOM items are only in the EBOM and connected to resolved items in the MBOM. Based on the previous descriptions of the various EBOM items, you can conclude that a resolved MBOM does not contain EBOM items anymore in case of multiple sourcing. Only when you have a single manufacturer for an EBOM item, the EBOM item could appear in the MBOM. Perhaps this is current in your company, but will this stay the same in the future?

It is up to your business process and type of product which direction you choose. Coming back to one-off products, here is does not make sense to have multiple manufacturers. In that case, you will see that the EBOM item behaves at the same time as an MBOM item.

What about part numbering?

clip_image011Luckily I reached the 1000 words so let´s be short on this debate. In case you want an automated flow of information between PLM and ERP, it is important that shared data is connected through a unique identifier.

Automation does no need intelligent numbering. Therefore giving parts in the PLM system and the ERP system a unique, meaningless number you ensure guaranteed digital connectivity.

If you want to have additional attributes on the PLM or ERP side that describe the part with a number relevant for human identification on the engineering side or later at the manufacturing side (labeling), this all can be solved.

An interesting result of this approach is that a revision of a part is no longer visible on the ERP side (unless you insist). Each version of the MBOM parts is pointing to a unique version of an MBOM part in ERP, providing an error free sharing of data.

Conclusion

Life can be simple if you generalize and if there was no past, no legacy and no ownership of data thinking. The transition of EBOM to MBOM is the crucial point where the real PLM vision is applied. If there is no data sharing on MBOM level, there are two silos, the characteristic of the old linear past.

(See also: From a linear world to a circular and fast)

What do you think? Is more complexity needed?

 

pdt2015

I will be soon discussing these topics at the PDT2015 in Stockholm on October 13-14. Will you be there ?

And for Dutch/Belgium readers – October 8th in Bunnik:

BIMopen2015

Op 8 oktober ben ik op het BIM Open 2015 Congres in Bunnik waar ik de overeenkomsten tussen PLM en BIM zal bespreken en wat de constructie industrie kan leren van PLM

7years

Two weeks ago I got this message from WordPress, reminding me that I started blogging about PLM on May 22nd in 2008. During some of my spare time during weekends, I began to read my old posts again and started to fix links that have been disappearing.

Initially when I started blogging, I wanted to educate mid-market companies about PLM. A sentence with a lot of ambiguities. How do you define the mid-market and how do you define PLM are already a good start for a boring discussion. And as I do not want to go into a discussion, here are my “definitions”

Warning: This is a long post, full of generalizations and a conclusion.

PLM and Mid-market

The mid-market companies can be characterized as having a low-level of staff for IT and strategic thinking. Mid-market companies are do-ers and most of the time they are good in their domain based on their IP and flexibility to deliver this to their customer base. I did not meet mid-market companies with a 5-year and beyond business vision. Mid-market companies buy systems. They bought an ERP system 25-30 years ago (the biggest trauma at that time). They renewed their ERP system for the Y2K problem/fear and they switched from drawing board towards a 2D CAD system. Later they bought a 3D CAD system, introducing the need for a PDM system to manage all data.

PLM is for me a vision, a business approach supported by an IT-infrastructure that allows companies to share and discover and connect product related information through the whole lifecycle. PLM enables companies to react earlier and better in the go-to-market process. Better by involving customer inputs and experience from the start in the concept and design phases. Earlier thanks to sharing and involving other disciplines/suppliers before crucial decisions are made, reducing the amount of iterations and the higher costs of late changes.

PLM_profSeven years ago I believed that a packaged solution, combined with a pre-configured environment and standard processes would be the answer for mid-market companies. The same thought currently PLM vendors have with a cloud-based solution. Take it, us it as it is and enjoy.

Here I have changed my opinion in the past seven years. Mid-market companies consider PLM as a more complex extension of PDM and still consider ERP (and what comes with that system) as the primary system in the enterprise. PLM in mid-market companies is often seen as an engineering tool.

LESSON 1 for me:
The benefits of PLM are not well-understood by the mid-market

To read more:

PLM for the mid-market – mission impossible?

PLM for the SMB – a process or culture change ?

Culture change in a mid-sized company – a management responsibility

Mid-market PLM – what did I learn in 2009 ?

Implementing PLM is a change not a tool

Mid-market deadlocks for PLM

Who decides for PLM in a mid-market company ?

More on: Who decides for PLM in a mid-market company ?

Globalization and Education

globalIn the past seven years, globalization became an important factor for all type of companies. Companies started offshoring labor intensive work to low-labor-cost countries introducing the need for sharing product data outside their local and controlled premises. Also, acquisitions by larger enterprises and by some of the dominant mid-market companies, these acquisitions introduced a new area of rethinking. Acquisitions introduced discussions about: what are real best practices for our organization? How can we remain flexible, meanwhile adapt and converge our business processes to be future ready?

Here I saw two major trends in the mid-market:

Lack of (PLM) Education

dummies_logoTo understand and implement the value of PLM, you need to have skills and understanding of more than just a vendor-specific PLM system. You need to understand the basics of change processes (Engineering Change Request, Engineering Change Order, Manufacturing Change Order and more). And you need to understand the characteristics of a CAD document structure, a (multidisciplinary) EBOM, the MBOM (generic and/or plant specific) and the related Bill of Processes. This education does not exist in many countries and people are (mis-)guided by their PLM/ERP vendor, explaining why their system is the only system that can do the job.

Interesting enough the most read posts on my blog are about the MBOM, the ETO, BTO and CTO processes. This illustrates there is a need for a proper, vendor-independent and global accepted terminology for PLM

Some educational posts:

Bill of Materials for Dummies – ETO  ranked #1

ECR/ECO for Dummies ranked #2

BOM for Dummies – CTO  ranked #4

BOM for Dummies: BOM and CAD  ranked #7

BOM for Dummies – BTO

Where does PLM start beyond document management ?

The dominance of ERP

swissAs ERP systems were introduced long before PLM (and PDM), these systems are often considered by the management of a mid-market company as the core. All the other tools should be (preferably) seen as an extension of ERP and if possible, let´s implement ERP vendor´s functionality to support PLM – the Swiss knife approach – one tool for everything. This approach is understandable as at the board level there are no PLM discussions. Companies want to keep their “Let´s do it”-spirit and not reshuffle or reorganize their company, according to modern insights of sharing. Strangely enough, you see in many businesses the initiative to standardize on a single ERP system first, instead of standardizing on a single PLM approach first. PLM can bring the global benefits of product portfolio management and IP-sharing, where ERP is much more about local execution.

LESSON 2:
PLM is not understood at the board level, still considered as a tool

Some post related to PLM and ERP

Where is the MBOM ?  ranked #3

Connecting PLM and ERP (post 1)(post 2)(post 3) ranked #8

Can ERP vendors do PLM ?

PLM and ERP – the culture change

PLM and ERP – continued

5 reasons not to implement PLM – Reason #3 We already have an ERP system

The human factor

whyworryA lot of the reasons why PLM has the challenge to become successful have to do with its broad scope. PLM has an unclear definition and most important, PLM forces people to share data and work outside their comfort zones. Nobody likes to share by default. Sharing makes day-to-day life more complicated, sharing might create visibility on what you actually contribute or fix. In many of my posts, I described these issues from various viewpoints: the human brain, the innovators dilemma, the way the older generation (my generation) is raised and used to work. Combined with the fact that many initial PLM/PDM implementations have created so many legacies, the need to change has become a risk. In the discussion and selection of PLM I have seen many times that in the end a company decides to keep the old status quo (with new tools) instead of really having the guts to move toward the future. Often this was a result of investors not understanding (and willing to see) the long term benefits of PLM.

LESSON 3:
PLM requires a long-term vision and understanding, which most of the time does not fit current executive understanding (lack of education/time to educate) and priority (shareholders)

Many recent posts are about the human factor:

The Innovator´s dilemma and PLM

Our brain blocks PLM acceptance

PLM and Blockers

The PLM paradox for 2015

PLM and Global Warming

Τα πάντα ρεί

PLM is doomed, unless ……

How to get users excited or more committed to a new PLM system?

The digital transformation

econimistThe final and most significant upcoming change is the fact that we are entering a complete new era: From linear and  predictable towards fast and iterative, meaning that classical ways we push products to the market will become obsolete. The traditional approach was based on lessons learned from mechanical products after the second world-war. Now through globalization and the importance of embedded software in our products, companies need to deliver and adapt products faster than the classical delivery process as their customers have higher expectations and a much larger range to choose from. The result from this global competitiveness is that companies will change from delivering products towards a more-and-more customer related business model (continuous upgrades/services). This requires companies to revisit their business and organization, which will be extremely difficult. Business wise and human change require new IT concepts – platform? / cloud services? / Big data?

Older enterprises, mid-market and large enterprises will be extremely challenged to make this change in the upcoming 10 years. It will be a matter of survival and I believe the Innovator´s Dilemma applies here the most.

LESSON 4:
The digital transformation is apparent as a trend for young companies and strategic consultants. This message is not yet understood at the board level of many businesses.

 

Some recent post related to this fast upcoming trend:

From a linear world to fast and circular ?

Did you notice PLM is changing?

Documents or Intelligent Data ?

The difference between files and data-oriented – a tutorial (part 1)(part 2)(part 3)

PLM is dead, long live …… ?

PLM, Soccer and game changing

PLM and/or SLM? – (part 1)(part 2)

Breaking down the silos with data

ROI (Return On Investment)

No_roiI also wrote about ROI – a difficult topic to address as in most discussions related to ROI, companies are talking about the costs of the implementation, not about the tremendous larger impact a new business approach or model can have, once enabled through PLM. Most PLM ROI discussions are related to efficiency and quality gains, which are significant and relevant. However these benefits are relative small and not comparable with the ability to change your business (model) to become more customer centric and stay in business.

Some of the ROI posts:

To PLM or Not to PLM – measuring the planning phase  ranked #5

Free PLM Software does not help companies  ranked #6

PLM: What is the target?

PLM selection–additional thoughts

PLM Selection: Proof Of Concept observations

Where is my PLM Return On Investment (ROI) ?

A PLM success story with ROI

Conclusion

A (too) long post this time however perhaps a good post to mark 7 years of blogging and use it as a reference for the topics I briefly touched here. PLM has many aspects. You can do the further reading through the links.

From the statistics it is clear that the education part scores the best – see rankings. For future post, let me know by creating a comment what you are looking for in this blog: PLM Mid-Market, Education, PLM and ERP, Business Change, ROI, Digitalization, or …??

Also I have to remain customer centric – thanks for reading and providing your feedback

nochangecartoon

Above Image courtesy of the marketoonist.com – Tom Fishburne
Image related to digital transformation: The Economist – the onrushing wave

If your are reading blogs related to PLM, I am sure you have seen a blog post from Stephen Porter (Zero Wait State), for example: The PLM state  the walking dead – PLM projects that never end.

Like Stephen, I am often triggered by an inspiring book, a touching movie or a particular song combined with my PLM-twisted brain I relate the content to PLM (there is no official name for this abnormality yet).

When driving home last week, I was listening to Phil Collins – In the air tonight

As I was just coming back from a discussion around PLM tools, BOMs and possible PLM expansion strategies in a company with customers and resellers, my twisted brain was thinking about two PLM related topics that were in the air tonight (at least for me).

Granularity vs. Integration: Suites vs. Best-in-class PLM

You must have noticed it, and if not, now you are aware:  Jim Brown and Chad Jackson started a PLM duel discussion platform at Engineering.com to bring PLM related topics to the table: TECH4PD.  Watch them argue and I hope with your feedback and the feedback of the PLM community, it will  help us to make up your mind.

The topic they discussed in their first session was about two different approaches you can have for PLM. Either start from a best in class PLM platform or build your PLM support by using dedicated applications and integrate them.

tech4pd

This is to my opinion one of the fundamental PLM topics to discuss.  And if I would have to vote (as  Jim and Chad ask you to do so), I would first vote for Chad (integration of software) and after a second thought, vote for Jim (best in class PLM). So see my problem.

If I relate the discussion to my experiences with  different companies, I realized that probably both answers are correct. In case you are an OEM you likely would benefit from a best in class PLM platform, as PLM systems aim to cover and integrate all data through the product lifecycle in a single system, single data model, etc.. So a good PLM platform would have the lowest cost of ownership in the long term.  OEMs are by definition not the smallest companies and in general have the highest need for global coverage.

But not every company is an OEM. Many mid-market companies are specific suppliers,serving different OEMs and although they also develop products, it is in a different context of market delivery. There is a need to be flexible, as their products used by OEMs might become obsolete in the near term, they need to be more flexible, reactive. and the best in class companies innovate and are proactive. For that reason they do want to invest in a best in class PLM system, which somehow brings some rigidness , but keep on optimizing these areas where improvement is needed in their organization, instead of changing the organization.

I believe this question will remain in the air until we get a clear split between these two types of PLM. There is a trend splitting classic PLM (OEM oriented) and new upcoming PLM solutions. Till that time, we will be confused by the two approaches. It is a typical PLM disease and the reason you do not experience the same discussion for ERP is obvious. ERP is much more a linear process that both for the OEMs and mid-market companies is aiming to manufacture products or goods at a single location. The differentiation is in global manufacturing. Where do you manufacture your products ?  Here the OEMs might have a bigger challenge. Global manufacturing is a PLM challenge too, which is in the air.

Where is the MBOM ?

This is the topic most visited in my blog and I am preparing a session with the MBOM as theme combined with PLM  for the upcoming PLM Innovation US conference end of October in Atlanta. I am not going to disclose all  the content here, but I will give you some thoughts that are in the air.

Companies historically manage their BOM in ERP, but as a result of globalization they now need to manage their manufacturing BOM at different locations. But each location has its own ERP and a local (M)BOM. What to do ?

This is in the air:

intheair
  • How do you keep the relation with the
    original engineering intent, the product information and the various local
    activities ?
  • Is the ERP system still the place to build
    the MBOM ?
  • Do you need an EBOM and MBOM in PLM ?
  • Cannot we have a single BOM ?
  • What about search technology ?
  • …..

I hope you will participate in both discussions that are the air, either by commenting to this blog, through Tech4PD, your blog (Oleg  ? 😉 ) or your participation at PLM Innovation US.

Looking forward to discuss with you about what you believe is in the air tonight.

image

Conclusion (as usual): It is a busy time – we are heading towards the end of the year, which for some reason is a deadline for many companies. So no long thought processes this time, just what is in the air.

blog_start

May 24th, 2008 was the date I posted my first blog post as a Virtual Dutchman aiming to share PLM related topics for the mid-market.

I tried to stay away from technology and function/feature debates and based on my day to day observations, describe the human side of the PLM  – what people do and why . All  from a personal perspective and always open to discuss and learn more.

Looking back and reviewing my 86 posts and 233 comments so far, I would like to share a summary around some of the main topics in my blog.

PLM

PLM_profIn 2008, PLM awareness was much lower – at that time one of the reasons for me to start blogging. There was still a need to explain that PLM was a business strategy needed beside ERP and PDM.

PLM will bring more efficiency, and in better quality, new innovative products to the market due to better collaboration between teams and departments.

At that time the big three, Dassault Systemes, Siemens and PTC  were all offering a very CAD-centric, complex approach for PLM. There was no real mid-market offering, although their marketing organizations tried to sell as-if a mid-marketing offering existed.  Express, Velocity, ProductPoint where are these offerings now ?

Now, In 2012 there is an established PLM awareness as everyone is talking about (their interpretation of) PLM and with Autodesk, a company that knows how to serve the mid-market, also acknowledged there is a need for PLM in their customer base, the term PLM is widespread

The new PLM providers focus on a disconnect between PDM and PLM, as in particular the handling of enterprise data outside the PDM scope is a white space for many mid-market companies that need to operate on a global platform.

PLM & ERP

NoChangeIn the relation between PLM and ERP, I haven’t seen a big change the past four years. The two dominating ERP originated vendors, SAP and Oracle were paying attention to PLM in 2008 in their marketing and portfolio approach.

However their PLM offerings in my perception, haven’t moved much forward. SAP is selling ERP and yes there is a PLM module and Oracle is having PLM systems, but I haven’t seen a real targeted PLM campaign explaining the needs and value of PLM integrated with ERP.

Historically ERP is the main IT-system and gets all the management attention. PLM is more considered something for engineering (and gets less focus and budget). Understanding PLM and how it connects to ERP remains a point of attention and the crucial point of interaction is the manufacturing BOM and the place where it is defined. The two most read posts from my blog are: Where is the MBOM and next Bill of Materials for Dummies – ETO, indicating there is a lot of discussion around this topic.

I am happy to announce here that in October this year during PLM Innovation US, I will present and share my thoughts in more detail with the audience, hoping for good discussions

New trends

There are three new trends that became more clear the past four years.

dummies_logoThe first one to mention is the upcoming of Search Based Applications (SBA). Where PLM systems require structured and controlled data, search based applications assist the user by “discovering” data anywhere in the organization, often in legacy systems or possible in modern communication tools.

I believe companies that develop an integrated concept of PLM and SBA can benefit the most. PLM and ERP vendors should think about combining these two approaches in an integrated offering. I wrote about this combined topic in my post: Social Media and PLM explained for Dummies

cloudThe second trend is the cloud. Where two-three years ago social media combined with PLM was the hype as a must for product innovation and collaboration, currently cloud is in focus.

Mainly driven and coming for the US, where the big marketing engine from Autodesk is making sure it is on the agenda of mid-market companies.

In Europe there is less a hype at this moment, different countries and many languages to support plus discussions around security take the overhand here.

For me a cloud solution for sure is lowering the threshold for mid-market companies to start implementing PLM. However how to make the change in your company ? It is not only an IT-offering. Like a similar discussion around Open Source PLM, there is still a need to provide the knowledge and change push  inside a company to implement PLM correct. Who will provide these skills ?

alm_1The third trend is the applicability of PLM systems outside the classical manufacturing industries.

I have been writing about the usage of PLM systems for Owner/Operators and the civil / construction industry, where the PLM system becomes the place to store all plant related information, connected to assets and with status handling. Currently I am participating in several projects in these new areas and the results are promising

People and Change

frogI believe PLM requires a change in an organization not only from the IT perspective but more important from the way people will work in an organization and the new processes they require.

The change is in sharing information, making it visible and useful for others in order to be more efficient and better informed to make the right decisions much faster.

This is a global trend and you cannot stay away from it. Keeping data locked in your reach might provide job security but in the long term it kills all jobs in the company as competiveness is gone.

The major task here lies with the management that should be able to understand and execute a vision that is beyond their comfort zone. I wrote about this topic in my series around PLM 2.0

Modern companies with a new generation of workers will have less challenges with this change and I will try to support the change with arguments and experiences from the field.

Audience

Since February this year, WordPress provides much more statistics and interesting is the map below indicating in which countries my blog is read. As you can see there are only a few places left on earth where PLM is not studied.  Good news !!

audience

Although most of my observations come from working in Europe, it is the US that provides the most readers (30 %) , followed by India (9 %) and on the third place the UK (6 %).

This might be related to the fact that I write my blog in English  (not in 100 % native English as someone commented once).

It makes me look forward to be in October in Atlanta during the PLM Innovation US conference to meet face to face with many of my blog readers and share experiences.

Conclusion

Reading back my posts since 2008, it demonstrated for me that the world of PLM is not a static environment. It is even that dynamic that some of the posts I wrote in the early days have become obsolete. 

At the end of 2008 I predicted the future of PLM in 2050 – here we are on the right track.

There is still enough blogging to do without falling into repetitions and  I am looking forward to your opinion, feedback and topics to discuss.

 

observationIn the past two weeks I had some interesting observations related to the core of PLM. Reading posts and some in-depth discussions with customers lead to the statements below:

Single version of truth ?

dummies_logo First I am going back to the intent of PLM – companies that implement PLM are not looking for a system where they can store information in a single database. Often the single version of the truth story is translated into technology . To illustrate this statement I was explaining a medical device company some weeks before how in PLM practices the interaction of requirements, integrated with regulatory compliance verification speeds up the product development process as deviations are early discovered during the development stage. The astonishing answer from the customer was; “Yes we already store this information in our well-known ERP system – so no need for PLM to handle this”

For this person the conclusion was that once data is stored in a system, it is managed. However  what the company never tried was to track each requirement individually (and its possible change) during the engineering process and have a direct connection to regulatory demands.

deaf_blindIn that area Excel, people’s knowledge and stored documents were used to collaborate. Off course with the late discovery of errors and several extra iterations due to it. As long as this company does not understand that the PLM system is not yet another tool to store data, but an enabler to work different and more efficient, these tools based statements will not bring them further. But as nobody get fired for selecting a well-known ERP system, but trying to change the way people work is a risk, often the first option is chosen.

And the more conservative the company culture, the more likely this will happen.

Tools do not make a change

global In a last week meeting I met a VP of a business group of a real global company. I am stressing the word real as there are many global companies, that actually have one main location where the IP and influence comes from – as compared to the real global companies where all around the world the knowledge and IP of the company is invented and spread from there. Although the discussion was on the current status and quality of the tools in use, during breaks we concluded that although the discussion is about tools, the hardest part for implementing PLM in their company is to master and motivate the changes in the way of working towards the users.

saveIn several blog posts from Oleg  (and others) I see the hope that new user interfaces, user data handling can provide a break through here. I partly agree here – in the eighties/nineties we had the single window terminal screens, which were easy to understand (no multi-tasking / no multi-windows). Slowly the current workforce got used to windows (still no multi-tasking) and the new generation (generation-Y) is less and less single tasking and has different ways of solving issues. New interfaces can contribute to the acceptation of a tool, but as in the end we are still doing the same – storing data in a central system without changing the way we work – there is nothing improved

MBOM in PLM

Another interesting statement of this VP was also that they are in the process of bringing all engineering data coming from different disciplines in their R&D / PLM environment. Originally it was the ERP system that was used to combine all data coming from different disciplines. However the disadvantage was that this product definition resided partly in an ERP (there is no concept of a single ERP as manufacturing differ so much globally)  and partly in PLM.  Their future plan was therefore to extend the coverage of PLM toward the whole preparation for manufacturing – my favorite topic too: see Where is the MBOM ?

Conclusion so far

In day to day relations customers and PLM vendors, implementers are talking about functions and features to implement and where and how data is stored. The major driver should be the concept of changing the way we work to be more efficient, more clever and with higher quality. This is not reached by storing data, but by having the right data available at the right moment. And this moment changes when implementing PLM

  • PLM Customers: Make sure that change of doing business is the target of your PLM implementation – do not look for tools only – check with your implementer and vendor which experience they have.
  • PLM Implementers: Schedule time and activities during the implementation to understand the business change and the customer to adapt. It is a different type of skill required but as important.
  • PLM Vendors: You have a hard time – as all are talking about the tools, you do not want to talk about the changes PLM implies – a pity but most customers do not want to hear this side during their PLM selection process

 

%d bloggers like this: