You are currently browsing the category archive for the ‘COBie’ category.
A year ago I wrote a blog post questioning if the construction industry would learn from PLM practices in relation to BIM.
In that post, I described several lessons learned from other industries. Topics like:
- Working on a single, shared repository of on-line data (the Digital Mock Up). Continuity of data based on a common data model – not only 3D
- It is a mindset. People need to learn to share instead of own data
- Early validation and verification based on a virtual model. Working in the full context
- Planning and anticipation for service and maintenance during the design phase. Design with the whole lifecycle in mind (and being able to verify the design)
The comments to that blog post already demonstrated that the worlds of PLM and BIM are not 100 percent comparable and that there are some serious inhibitors preventing them to come closer. One year later, let´s see where we are:
BIM moving into VDC (or BLM ?)
The first trend that becomes visible is that people in the construction industry start to use more and more the term Virtual Design and Construction (VDC) instead of BIM (Building Information Model or Building Information Management?).
The good news here is that there is less ambiguity with the term VDC instead of BIM. Does this mean many BIM managers will change their job title? Probably not as most construction companies are still in the learning phase what a digital enterprise means for them.
Still Virtual Design and Construction focuses a lot on the middle part of the full lifecycle of a construction. VDC does not necessary connect the early concept phase and for sure almost neglects the operational phase. The last phase is often ignored as construction companies are not thinking (yet) about Repair & Maintenance contracts (the service economy).
And surprisingly, last week I saw a blog post from Dassault Systemes, where Dassault introduced the word BLM (Building Lifecycle Management). Related to this blog post also some LinkedIn discussions started. BLM, according to Dassault Systemes, is the combination of BIM and PLM – read this post here.
The challenge however for construction companies is to, what are the related data sets they require and how can you create this continuity of data. This brings us to one of the most important inhibitors.
Data Ownership
Where in other industries a clear product data owner exists, the ownership of data in EPC (Engineering, Procurement, Construction) companies, typical for the construction industry or oil & gas industry is most of the times on purpose vague.
First of all the owner of a construction often does not know which data could be relevant to maintain. And secondly, as soon as the owner asks for more detailed information, he will have to pay for that, raising the costs, which not directly flow back to benefits, only later during the FM (Facility Management) /Operational stage.
And let´s imagine the owner could get the all the data required. Next the owner is at risk, as potentially having the information might makes you liable for mistakes and claims.
From discussion with construction owners I learned their policy is not to aim for the full dataset related to a construction. It reduces the risk to be liable. Imagine Boeing and Airbus would follow this approach. This brings us to another important inhibitor.
A risk shifting business
The construction industry on its own is still a risk shifting business, where each party tries to pass the risk of cost of failure to another stakeholder in the pyramid. The most powerful owners / operators of the construction industry quickly play down the risk to their contractors and suppliers. And these companies then then distribute the risk further down to their subcontractors.
If you do not accept the risk, you are no longer in the game. This is different from other industries and I have seen this approach in a few situations.
For example, I was dealing with an EPC company that wanted to implement PLM. The company expected that the PLM implementer would take a large part of the risk for the implementation. As they were always taking the risk too for their big customers when applying for a project. Here there was a clash of cultures, as PLM implementers learned that the risk of a successful PLM implementation is vague as many soft values define the success. It is not a machine or platform that has to work after some time.
Another example was related to requirements management. Here the EPC company wanted to become clear and specific to their customer. However their customer reacted very strange. Instead of being happy that the EPC company invested in more upfront thinking and analysis, the customer got annoyed as they were not used to be specific so early in the process. They told the EPC company, “if you have so many questions, probably you do not understand the business”.
So everyone in the EPC business is pushed to accept a higher risk and uncertainty than other industries. However, the big reward is that you are allowed to have a cost of failure above 15 – 20 percent without feeling bad. Which this percentage you would be out of business in other industries. And this brings us to another important inhibitor.
Accepted high cost of failure
As the industry accepts this high cost of failure, companies are not triggered to work different or to redesign their processes in order to lower the inefficiencies. The UK government mandates BIM Level 2 for their projects starting in 2016 and beyond, to reduce costs through inefficiencies.
But will the UK government invest to facilitate and aim for data ownership? Probably not, as the aim of governments is not to be extreme economical. Being not liable has a bigger value than being more efficient for governments as I learned. Being more efficient is the message to the outside world to keep the taxpayer satisfied.
It is hard to change this way of thinking. It requires a cultural change through the whole value chain. And cultural change is the “worst” thing that can happen to a company. The biggest inhibitor.
Cultural change
Cultural change is a point that touches all industries and there is no difference between the construction industry and for example a classical discrete manufacturing company. Because of global competition and comparable products other industries have been forced already to work different, in order to survive (and are still challenged)
The cultural change lies in people. We (the older generation) are educated and brought up in classical engineering models that reflect the post second world war best practices. Being important in a process is your job justification and job guarantee.
New paradigms, based on a digital world instead of a document-shifting world, need to be defined and matured and will make many classical data processing jobs redundant. Read this interesting article from the Economist: The Onrushing Wave
This is a challenge for every company. The highest need to implement this cultural change is ironically for those countries with the highest legacy: Western Europe / the United-States.
As these countries also have the highest labor cost, the impact of, keep on doing the old stuff, will reduce their competitiveness. The impact for construction companies is less, as the construction industry is still a local business, as at the end resources will not travel the globe to execute projects.
However cheaper labor costs become more and more available in every country. If companies want to utilize them, they need to change the process. They need shift towards more thinking and knowledge in the early lifecycle to avoid the need for high qualified people to be in the field to the fix errors.
Sharing instead of owning
For me the major purpose of PLM is to provide an infrastructure for people to share information in such a manner that others, not aware of the information, can still easily find and use the information in a relevant context of their activities. The value: People will decide on actual information and no longer become reactive on fixing errors due to lack of understanding the context.
The problem for the construction industry is that I have not seen any vendor focusing on sharing the big picture. Perhaps the BLM discussion will be a first step. For the major tool providers, like Autodesk and Bentley, their business focus is on the continuity of their tools, not on the continuity of data.
Last week I noticed a cloud based Issue Management solution, delivered by Kubus. Issue Management is one of the typical and easy benefits a PLM infrastructure can deliver. In particular if issues can be linked to projects, construction parts, processes, customers. If this solution becomes successful, the extension might be to add more data elements to the cloud solution. Main question will remain: Who owns the data ? Have a look:
For continuity of data, you need standards and openness – IFC is one of the many standards needed in the full scope of collaboration. Other industries are further developed in their standards driven by end-user organizations instead of vendors. Companies should argue with their vendors that openness is a right, not a privilege.
Conclusion
A year ago, I was more optimistic about the construction industry adopting PLM practices. What I have learned this year, and based on feedback from others, were are not at the turning point yet. Change is difficult to achieve from one day to the other. Meanwhile, the whole value chain in the construction industry has different objectives. Nobody will take the risk or can afford the risk.
I remain interested to see where the construction industry is heading.
What do you think will 2015 be the year of a breakthrough?
This year I had several discussions with persons working for construction companies. They shared their BIM dreams and tried to explain them the PLM benefits and basics as they are much alike. The challenge in these discussions was that each of us comes from a complete different background. The word PLM does not resonate well outside product-centric companies. In project-centric companies, people tend to focus more on the tools they are using, instead of the overall business process. Construction companies and EPC companies in Oil & Gas always had a project-centric approach, and for them every project is unique.
Ten years ago
AECbytes.com published in 2004 the chart below, demonstrating the construction industry is lagging behind in productivity compared to other industries.
You find a link to the full article here.
Now it is BIM
It is an old graph, and I haven’t seen a more recent one. However, I guess the trend has not changed significantly. What has changed is that construction companies are now talking about BIM. BIM meaning Building Information Model, a term which has a history with Autodesk. Read the wiki news about BIM. There are many interpretations of BIM. One of the formal definitions is:
Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition.
This is a high-level definition, and BIM is characterized as a shared knowledge resource. Is it a 3D Digital model ? Is it a kind of DMU (Digital Mock-Up) ? Is it a Building Lifecycle environment ? There is the word “life-cycle” in the definition.
Why BIM?
I noticed many vendors and consultants in this industry talk about what is BIM. It is rare to find quantified values for implementing BIM. You find exactly the same values as PLM brings to manufacturing companies. Better decisions, managing complex constructions and projects, early decisions that save costs later, etc.
Governments have been pushing BIM to the construction industry (both for the civil and building industry) as they believe this is a way to improve quality and better manage time and costs. And as they are usually the big spenders, the leading construction firms have to adapt to these standards to get these contracts.
Would any construction company begin with BIM without being pushed?
In product-centric companies, the global competition and the consumer are driving the need for PLM. Margins are under pressure, and they need to be competitive to stay in business. The construction industry is not (yet) that much driven by global influence and the choice of consumers.
The chart below illustrates the BIM ambition in the UK. At this time, companies are entering level 2, and they struggle to understand what is the impact for them to be at BIM Level 2. I am sure other countries have their own and similar roadmap.
The diagram illustrates the same path which other industries have been going through in the past twenty years.
BIM Levels and PDM / PLM
BIM level 0 is focused on managing CAD, in the other industries this was the time that single disciplines managed their own CAD data. There was no sharing at that time.
Level 1 is focusing on managing 2D and 3D CAD together much similar to what in other industries is done with a PDM system. The PDM system manages in one environment the 2D and 3D data. This is still as a departmental solution but could provide in one environment information from different disciplines. Here, you find all suppliers from 3D CAD systems having their PDM solution, not focusing on a core 3D Model
Level 2 is about sharing 3D BIM models for different disciplines to support 4D (construction planning based on 3D) and 5D (construction planning based on 3D planning and costing integrated). This is what in other industries, primarily automotive and aerospace, was considered as the early days of DMU (Digital Mock Up) and PLM. Dassault Systemes and Siemens are leading here and historically CATIA has been the base for the 3D Model.
BIM Level 3 is what can be found currently in the asset centric industries (Energy, Nuclear, Oil & Gas) where working from a virtual plant model all disciplines are connected through the whole lifecycle. This is the domain that I have been advocating in previous posts, promoting PLM concepts and capabilities.
For example read: PLM for Asset Lifecycle Management.
Apparently the construction industry is still in the early phases of BIM Level 3. I would compare it to teenage sex; they all talk about it, but nobody does it. Or Hollywood BIM as Antonio Ruivo Meireles calls it in his AECbytes article: “Say “NO!” to Hollywood BIM”.
Antonio talks about the BIM implementation at Mota-Engill. Briefly touching a common topic for PLM implementations: “People and Cultural Change”. However, most of the implementation report was focused on tools, where even Excel and Visual Basic play a role.
Tools or Platform ?
And this is the point where construction companies could learn from other industries. They have discovered (or are still discovering) that Excel and Visual Basic are like soft drugs. They take away the pain, but they do not provide the solution in the long term. Instead of that, legacy Excels start piling up in directories, and the Visual Basic code becomes the domain of an enthusiastic expert (till this expert moves to another company or retires). The risk is ending up with a legacy environment so hard to change that a costly revolution is needed at a certain moment.
Construction companies are still investing in selecting a set of tools/applications, each with their own proprietary data and format. And they use customizations or standardized information carriers, like the COBie spreadsheets, to exchange information between partners and disciplines. This is already a giant step forward, as COBie forces companies to focus on mandatory and standard content, required at specific stages of the lifecycle instead of searching for it when it is actually needed.
Somehow the COBie approach is similar to the early days of PLM, where companies forced their disciplines to save information in the PLM system (as it became imperative). In these departments and disciplines the work and interaction did not change so much as before they had the PLM system. The cultural change here was that designers and engineers had to enter more data upfront for higher quality downstream.
An intermediate conclusion might be that construction companies follow the same direction as early PLM. Standardizing the data (model) to have a common understanding between stakeholders. Construction companies might not want to implement a PLM system as ownership of data is unclear as compared to manufacturing companies every discipline or department in PLM might be another company in the construction industry.
Now let’s look into the future
The movie below from Airbus describes the current way of working in a multidisciplinary, multi-partner, multi-location online system. Airbus calls it their DMU. Please before continuing reading look at this movie as the concept is crucial
I want to highlight two statements in this movie.
Russ Brigham @ 5:39 talking about suppliers not participating to the DMU:
“They will be making decisions on out of date data or even incorrect data”
And @ 7:11
“DMU is a mind-set …….”
I am aware that the aerospace industry is not directly comparable to the construction industry, there are commonalities from which the construction industry can learn:
- Working on a single, shared repository of on-line data (the DMU)
A common data model – not only 3D - It is a mind-set.
People need to share instead of own data - Early validation and verification based on a virtual model
Working in the full context - Planning and anticipation for service and maintenance during the design phase
Design with the whole lifecycle in mind (and being able to verify the design)
Data ownership ?
For the construction industry, the current difficulty might be that none of the parties involved wants to invest in owning the data. For Airbus, it is clear. As the manufacturer of the airplane, they remain responsible for the information throughout the whole lifecycle.
For a construction, this might be different. The owner might be totally disconnected from the construction and the operations, therefore, not willing to promote or invest in the DMU approach.
However, the owner should realize that it is not about ownership but about facilitating on-line collaboration around a construction from the initial concept phase till maintenance and even decommissioning, connecting all the stakeholders. The benefits better decisions at each stage of the lifecycle leading to lower failure costs and waste in materials, resources and time. The construction industry still accepts too high failure rates compared to the manufacturing industry. And as at the end the owner/operator spends most of these costs, they should be interested in this approach.
Major construction companies responsible for the project execution and control might want to invest in a PLM platform, allowing them to execute projects better, learn from other connected projects and create a solid base for maintenance contracts
My dream and wish for 2014 for the construction industry: Focus on the next step of integrating data on a PLM backbone instead of standardizing interfaces between applications. It is the future mind-set proven in other industries.
Jos, great thoughts about BOM management. Here are some of my thoughts. I can see how BOM management will evolve…
As a complement, even if more and more of the diversity of a product is managed at the software level…
1) A wiring diagram stores information (wires between ports of the electrical components) that does not exist in most of…
BOM has NEVER been the sole "master" of the Product. The DEFINITION FILE is ! For example the wiring of…
Interesting discussion about part numbers and where they originate. Though there seems to be consensus about the EBOM and MBOM,…