You are currently browsing the tag archive for the ‘Asset Lifecycle Management’ tag.

To avoid that software geeks are getting curious about the title – in this context, ALM means Asset Lifecycle Management. In 2008 I was active for SmarTeam to promote PLM concepts relevant for Asset Lifecycle Management. The focus was on PLM being complementary to asset operation management (EAM Enterprise Asset Management and MRO – Maintenance Repair and Overhaul).

This topic has become actual for me in the past two months, having discussed and seen (PDT) the concepts of a model-based approach for assets and constructions. PLM, ALM, and BIM converge conceptually. Every year I give a one-day update from the field for students doing a master for PLM & BIM on top of their engineering/architectural background. Five years ago, there was no mentioning of BIM, now the ratio of BIM-oriented students has become significant. For me it is always great to see young students willing to learn PLM or BIM on top of their own skillset. Read more about this particular Master class in French when you click on the logo to the left.

In 2012 I started to explain PLM benefits to EPC companies (Engineering Procurement Construction), targeting a more profitable and efficient delivery of their constructions (oil platform, plant, building, infrastructure). The simplified reasoning behind using PLM was related to a more efficient and quality of multidisciplinary collaboration, reducing costly fixes during construction, and smoothening the intensive process of data handover.

More and more in the process industry, standards, like ISO 15926 (Process Industry) and ISO 19650 (BIM – mainly in the UK), became crucial.  At that time, it was difficult to convince companies to focus on the horizontal-integrated process instead of dedicated, disconnected tools. Meanwhile, this has changed, thanks to the Digital Twin hype. Let’s have a look.

PLM and ALM

The initial value for using PLM concepts complementary to MRO systems came from the fact that MRO systems are mainly focusing on plant operations. You could compare these systems with ERP systems for manufacturing companies, focusing execution and continuous operation. Scheduled maintenance and inspections are also driven by the MRO system. Typical MRO systems are Maximo and SAP PM. PLM could deliver configuration management, linking the design intent to the physical implementation. Therefore provide higher data quality, visibility, and traceability of the asset history.

The SmarTeam data model for Asset Lifecycle Management

In 2010, I shared these concepts in two posts: Asset Lifecycle Management using a PLM-system and PLM for Asset Lifecycle Management and Asset Development based on lessons learned with some (nuclear) plant owner/operators. They started to discover the need for configuration management to ensure data quality for operations. In 2010-2014 the business case using PLM complementary to MRO was data quality and therefore reduced down-time when executing large maintenance programs (dependencies between the individual projects were not visible without PLM)

In MRO-systems, like in ERP-systems, the data for execution is based on information coming from various engineering sources – specifications, PFDs, P&IDs.  Questions owner/operators ask themselves are:

  • What are the designed operational settings?
  • Are the asset parameters currently running as designed?
  • What is the optimized maintenance period?
  • Can we stretch maintenance intervals?
  • Can we reduce inspections?
  • Can we reduce downtime for maintenance and overhaul?
  • What about predictive maintenance?

Most of these questions are answered by experts that use their tacit knowledge and experience to give the best so far answers. And when the answers were wrong, they were accepted as new learning points. Next time we won’t make this mistake, and the experts become even more knowledgeable.

Now, these questions could be answered if you can model your asset in a virtual environment. In the virtual world, you would use simulation models, logical models, and 3D Models to describe the asset. This is where Model-Based Systems Engineering practices are used. However, these models need to be calibrated based on reality. And that is where IoT and Asset Operation Monitoring comes in connecting physical behavior with virtual predicted behavior. You can read more about this relationship in my post: Will MBSE the new PLM instead of IoT?

PLM and BIM

In 2014 when I started to discuss PLM concepts with EPC-companies (Engineering, Procurement, and Construction), mainly in the Oil & Gas industry. Here excellent asset development tools (AVEVA, Intergraph, Bentley) are the standard, and as the purpose of an EPC company is to deliver a plant or platform. Each software tool has its purpose and there is no lifecycle strategy.  The value PLM could bring was providing a program overview (complementary with Primavera), standardization, multidisciplinary coordination and visibility across projects to capture knowledge.

Most of the time, the EPC companies did not see the value of optimizing themselves as this was accepted in the process. Even while their productivity and cost due to poor quality (fixing during construction /commissioning) were absurd (10-20 % of the project budget). Cultural change – think longer instead of fix later – was hard to explain. In the end, the EPC was not responsible for operations, so why bother that much?

My blog posts: PLM for all Industries and 2014 – the year that the construction industry did not discover PLM illustrate the challenge at that time. None of the EPCs and construction companies had the, that improving collaboration based on information-continuity (not data-driven yet) could bring the significant benefits, despite their relatively low-profit margin (1- 3 % is considered excellent). Breaking the silos is too.

Two recent trends, however, changed the status quo that existed.

First of all, more and more, the owner/operator does not want to be responsible for the maintenance and operations of the asset. The typical EPC-companies now became DBO-companies (Design Build and Operate), this requires lifecycle thinking for these companies as most of the costs of an asset are during its maintenance and operation phase.

Advanced Thinking (read: (Model-Based) Systems Engineering) can help these companies to shift their focus on a more sustainable design of the asset for the future and get rewarded for that. In the old EPC-model, the target was “just” to deliver as specified.

A second significant trend is the availability of cloud infrastructure for the construction world. A cloud infrastructure does not require considerable investment for the stakeholders in a construction project. By introducing BIM in a common data environment (CDE), a comparable infrastructure to PLM is created and likely the Maintenance-and-Operatie stakeholder is eager to have the full virtual definition here for the future.

Read more about BIM and CDE for example, here: CDE – strategic BIM process tool.

Of course, technology and standards are there to collaborate. Now it is up to the stakeholders involved to develop new skills for collaboration (learn or hire) and implement them through new ways of working. A learning process can never be pushed by a big-bang, so make sure your company operates in two modes while learning.

As I mentioned the Maintenance-and-Operate stakeholders or in traditional cases, the Owner/Operators are incredibly interested in a well-defined virtual model of the asset. This allows them to analyze and simulate the implementation of fixes and enhancements for the future with an optimum result. Again we are talking about a digital twin of the asset here

Conclusion

Even though the digital twin is on the top of the Gartner Hype cycle, it has become already a vital principle to implement in particular for substantial, critical assets. As these precious assets, minor inefficiencies in data continuity can still be afforded to learn. From the moment companies have established a digital continuity between their virtual and physical assets, the concept for Digital Twin can also be profitable (and required) for other industries. In particular when these companies want to deliver their products as a service.

 

Note: I have been talking this year a lot about the challenges of digital transformation applied to PLM in particular. During PI PLMx London 2020 on February 3 and 4, I will lead a Think Thank session related to the challenge of connecting your PLM transformation to your executives’ vision (and budget). See you there ?

observation Although I am still active most of my time in ‘classical’ PLM, some of the projects I am involved with also deal with Asset Lifecycle Management. In general PLM focuses on a product development process, starting from a conceptual phase, going through planning, development and production. The PLM system serves as a collaboration and information backbone for all product IP (Intellectual Property). One of the main capabilities a PLM system provides is a ‘single version of the truth’.

And it is this capability, which makes a PLM system an excellent choice for Asset Lifecycle Management

Who practices Asset Lifecycle Management ?

alm Asset Lifecycle Management can be found at any location, where a company is maintaining a process – we call these companies Owners/ Operators. Best known industry for Asset Lifecycle Management is the Process & Power industry, where a company produces oil, energy or chemicals. However the same concept is also valid for water companies (water distribution process), food processing and infrastructure companies (railways, airports, roads)

All these companies have in common that they support a certain process and the challenge is, while being in operation, to optimize the process. During operation, maintenance and improvement activities should be as little as disruptive as possible.

A maintenance stop is very costly for Owner/Operators. Imagine a plant not producing fuel for two weeks (millions of liters) or a nuclear reactor not producing electricity for a month (millions of kilowatts) – no income. And no maintenance will lead to unexpected problems and in the worse case, disasters. So it is also about balancing these activities.

Let’s look at a definition of Asset Lifecycle Management

Asset Lifecycle Management is a balanced and active management of assets over the lifecycle, coupled with business objectives.

Simply said it translates into an approach, where based on business objectives (process stability, safety, margin) a company tries to optimize the usage of their assets (a reactor, a pump, a rail track, a road) through their individual lifecycles. This means perform preventive maintenance; renovate a part of the process and perform more parallel activities with a focus on improving the lifecycle of the process

So why not use a MRO system?

mro An MRO (Maintenance, Repair & Overhaul) system can be compared with an ERP system for manufacturing companies. The MRO system manages and schedules activities and resources on the plant, keeping track of maintenance activities done on inventory. But can it serve as the system providing the single version of the truth for all plant information? No!

So why not use an ERP system?

erp An ERP system is mostly used by owner/operators to control all financial transactions (contracts, purchasing, suppliers, projects/resources accounting). Some ERP vendors provide MRO functionality in a single system; still can this system provide the single version of truth for all plant information? Again I am sure it is not the case.

So why not use a document management system?

doc As most of the process information is stored in various types of documents, is seems to be appropriate to store all information in a document management system. And actually this is what owner/operators try to do, however they maintain inside their company different document management systems (paper archives, office documents in a specific system, engineering documents in another system, etc, etc). Each of the systems can provide a single version of the truth for specific content, however there is a consolidated single entry point for all asset data. Often the documents also do not reflect the status of an asset. Is the asset running in, is it active, is it demolished?

The tag number does not show it, and changing the status of an asset forces people to go through the various document systems to change the status there. An inefficient and costly procedure, not reliable and often not done.

So why not an integrated plant engineering system?

plant_eng Engineering plant software is designed to support the design collaboration and is mostly used by EPC contractors. These engineering companies are hired by the owner/operator to design and construct the plant or make major modifications of the plant. EPC contractors need to work as efficient as possible (to get the job), which means for them work as intelligent as possible in an integrated manner with tag numbers, P&IDs, 3D Equipment, Piping, ISOs. This intelligence leads to an application specific format and infrastructure.

During the hand-over of the plant or modification, this intelligence disappears as the owner/operator does not use the engineering plant software. They do not want to be dependent on a single software provider or version of the data. As data has to live for many years, sometimes 30 years or more, application specific data is hard to maintain. So as part of the hand-over data will be provided in neutral formats, worst case paper, but often in PDFs, TIFFs or other publishing format, losing all the intelligence.

15926 There is an intelligent, neutral format based on ISO 15926. This requires an investment from the EPC contractor and an investment from the owner/operator to manage all information in this format. For complex and long-lasting environments, like a nuclear plant, this approach surely pays off; however what you see is that on both sides (EPC and Owner/Operator) they try to minimize the costs on data handling/conversion. This leads in the long term to much more labor time internal at the owner/operator to manage and assure the data is accurate. But these costs somehow come later and are more hidden. And the question remains: can this system serve as the single version of truth for all plant information? No, plant engineering systems are too application specific

In addition, plant engineering software environments are not targeted to work integrated in an owner/operator environment, managing parallel projects and resources, quality processes and inventory statuses related to a certain asset and project.

So why not use a project management software system?

proj As in a plant many projects can run in parallel, it happens that they run on the same assets or locations in the plant. For engineers and maintenance it is important to have visibility on which projects have impact on each other. Project management software is not targeted to make data visible related to a collection of assets or locations. No, project management software can not be the system to serve as the single version of truth for all plant information.

So either we give up for looking a single version of the truth and pay the price for multiple software systems to maintain in the company and take the extra efforts for configuration management for granted, or we look at PLM ?

The PLM based solution

In the past 15 years I have done several projects with ENOVIA and projects where Asset Lifecycle Management was done with ENOVIA. For sure, other flexible PLM systems can do the same, as the solution lies in an adapted data model for ALM.

This picture shows what a PLM system can do:

alm_data_model

It can provide all related information (documents, inventory, locations, and projects) to an asset with one click from within single system. In addition it can also give the actual status of the asset. Assets are often identified by tag numbers, and the lifecycle of an asset can be managed by default in a PLM system, combined with Asset Change processes.

Best Practices coming from the PLM world can be used here too. The major challenge for PLM vendors is to reduce the complexity for data handling, as ALM users will not be engineers experienced to complex CAD environments. They are information workers, who need with a short learning curve, direct access to the data they require (and they should be sure the data is reliable)

Note: the PLM system will need to interface with the MRO and ERP system. Like in the classical PLM concept, MRO and ERP are the transactional systems, controlling the day to day activities, where the PLM system provides the accurate plant information (IP) required for an activity.

Also the PLM system will manage the non-standard activities through projects, change processes and will rely on accurate information from ERP.

The major benefits reported from implementations based on a PLM system are: roi

  • Reduced down-time for the plant, due to better planning and accurate information when preparing a maintenance stop. Less surprises with unforeseen delays of production.
  • More reliable and less effort to be complaint to safety, health, environment and governmental regulations as all information is available in a single, controlled and traceable environment
  • Lower cost of ownership for ALM. Instead of maintaining various silos of information and provide access to certain users, a single system with a common interface is available for most of the users.

 

Conclusion: Owner/Operators should look into the benefits a PLM system can bring for them. Interesting the benefits are not based on the integration of product development, but on providing accurate information from different entry points for different roles

 I am curious to learn who has seen a similar approach – feel free to comment

Translate

Categories

  1. If it was easy, anyone could do it. It's hard. It's supposed to be hard. Quote inspired by Tom Hanks…

%d bloggers like this: