You are currently browsing the category archive for the ‘CAD data management’ category.

observation Two weeks ago I received through the PLM group on LinkedIn, the following question from Nathalie: “Do you know any specific examples of what some companies have done to get their users ready, excited or more committed to the new PLM system?”

When digging in my mind and planning to give a quick answer, I realized it was an interesting question with a contradiction embedded: users and excitement for a new PLM system.

This week I was attending the SmarTeam User Group meeting in the Netherlands, where an excellent presentation was given by Simon and Hessel from a Dutch company called  Meyn (Poultry processing) about their PLM implementation. They shared their excitement !

Combined with an interesting discussion on Oleg’s blog with Frank, I believe I have the ingredients to answer the above question more complete.

PLM is not exiting for users

myplm I think this is fact number one. When you go to tradeshows or PLM exhibitions, you see usually only 3D CAD demos, nobody tries to demonstrate PLM functions and features in detail. As a side step, I believe the best PLM system should be almost invisible for the user. Users want to work in their own environment with applications like CAD, Excel (BOM handling apps), Office, FEA tools, Simulation tools and more.

ERP has a more clear value proposal, if you want to define and schedule your manufacturing and manage the financial transactions, everyone has accepted that you need ERP. User acceptance is not relevant, users have to work with the provided interface as otherwise production or accounting will fail, there is no alternative.

In contrary, the clear value and definition of PLM are not clear to user. For that reason these users do not get excited when confronted with PLM. They have been surviving without implementing PLM, so they believe there is an alternative.

 

But we know there are PLM benefits?

My previous post – PLM in the mid-market a mission impossible? – lead to a discussion with Oleg and Frank coming with anew and interesting view point. Frank mentioned that in the German area, many mid-market companies do PLM without purchasing an enterprise PLM system from the known vendors.

coopThe discussion focused on granularity, as all of us believed that a set-by-step approach towards PLM best practices, driven by people who understand the company very well, is the key to success. For this approach you need people inside the customer’s organization who can formulate the vision assisted by consultants working very dedicated in that industry. It requires a different type of consultant as those active in the big enterprise projects.

Instead of implementing PLM as a standard process, in this approach the customer drives and leads the activities where they see benefits in their overall business process. To achieve this, the company must have has a clear vision, where they want to be in the next 5 – 10 years.

Next implementations steps should fit in this strategy and prioritized based on different parameters and these steps are not always with a focus on PLM.

And here lies the key for successful PLM implementations.

my_way The implementation might be based on an academic approach around a core PLM data model and best practices. Mid-market offerings are around an OOTB (Out-Of-The-Box) quick implementation –  the PLM system/implementer leads.

Something the management of likes to hear; quick and with little customization, which would translate in lower costs of implementation and disruption of the organization. But then, the end-users start to complain. There is too much change their standard way of working and they do not see the advantages – keying in more data in a system does not help them.

No_roi The introduction of PLM brings more complexity and as the new system has to prove itself, there is not big enthusiasm from the average user. The management can push, like in the ERP situation, but in general also the management is anxious to learn if this OOTB-approach brings the benefits and when it fails they ask the vendor where the estimated ROI can be found.

Concluding you will be lucky if users get excited form the OOTB approach.

sel_a In the second and granular approach, the company defines their strategy and vision, not necessary a 100 % PLM vision. This strategy need to be clear and shared with the employees in the company, especially for those who are affected by changes.

Next together with implementation partners, who bring in the know-how and possible software tools, a part of the company’s process is addressed and improved. It can be in any area, changing the CAD engine, automate BOM handling, connect sales to engineering or connect after sales/service to engineering.

Many of these areas of interest have different solutions, some are extensions of the CAD environment, some of them are extensions of the ERP environment and some of them are extensions of the IT-platform used in the company.

This approach is not sold by the PLM vendors, as they want to introduce their system as the IT-platform, wrap around the CAD and even capture the definition of the MBOM and initiation of the Item master.

A step-by-step approach based on different granular components, every time in the direction of the company’s strategy, plus all the time feed-back to the end-users on the positive impact of the change, is for me the key to success. In my previous post I was looking for a global provider for these required components.
With the step by step approach with granular solutions, we get users involved and excited.

 

And this brings me the to the presentation from Meyn

meyn The first time I got involved with Meyn was in October 2004. At that time they had chosen to move from their BaaN-2D CAD infrastructure to a new environment with BaaN – 3D CAD (CATIA). Simon presented their target strategy and vision: moving away from being an Engineering To Order company to become primarily a Configure To Order company.

ENOVIA SmarTeam was chosen to manage the 3D CAD and to connect the information to BaaN. Initially Meyn started in the classical PLM approach, but already after a few months, the understanding was there, they need have step-by-step approach, focused on results for the new CATIA users, without communicating around a complete PLM focused project.

So they followed a stepped approach, they called them waves.

Moving from Engineering to Order to Configure to Order is not software implementation. It requires rationalization of your products; convert them into modular, configurable parts. For this you need to be an engineering expert, not a software expert.

But when it comes to implementation of this concept in the software, you need both experts. And through this collaboration, a methodology for skeleton design was established which was driven by Meyn. And the reason the users were excited was, that they were doing real engineering, the benefits were significant visible.

roi Customer project related engineering time (typical ETO), which was in the beginning their core activity, became around 30 % of the time. More time could be spent on developing new machines in a modular way. With almost the same amount of engineers the turn-over of the company had more than doubled. A win-win environment which makes also the end-users excited.

Still the backend with ERP at Meyn remained almost the same similar to the time they were working in the 2D environment. And the most interesting conclusion at the end of the presentation was, they are still using the same slide with the vision and they can explain why each step was taken and justify it by measurable benefits.

And this brings me to the answer of the question

“Do you know any specific examples of what some companies have done to get their users ready, excited or more committed to the new PLM system”?

  • The management needs to have a clear vision where they want to be as a company in the future. This is not an IT-vision, but a business vision which explain why changes are needed. This vision should be clear to the employees. Communicate!
  • Where possible provide metrics!
  • Do not talk about a PLM system; it can be also in other tools. Talk about improvement steps in the business processes contributing to the vision. The PLM system is the information backbone, not the front-end. Management and implementers should talk business functionality not IT functions and features. Do not talk in applications!
  • Build step by step user scenarios with focus on methodology and user understanding. Implementations with a function-feature focus are hard to accept by the users. Talk business!
  • The management should present their vision again and again, supported by metrics what has been accomplished and what has been learned for the future – repeat!

Conclusion

There are thousands of mid-market companies that have a vision to improve their business. The PLM system should never be the topic of discussion with the end users; it is the change in working methods that is important, supported by various systems -CAD/ERP/CRM – and almost invisible …….. PLM

The company Meyn is an example of this approach. Simon and Hessel are working for Meyn as engineers improving their company’s business. Unfortunate it is not their business to explain all around the world, how PLM supports business change in a mid-market company. I was glad to attend their session last week.

observation In my previous post, BOM for Dummies related to Configure To Order, I promised to come back on the special relation between the items in the BOM and the CAD data. I noticed from several posts in PLM and PDM groups that also the importance of CAD data is perceived in a different manner, depending on the background of the people or the systems they are experienced with.

So I would like to start with some general statements based on these observations.

planning People who are talking about the importance of CAD data and product structures are usually coming from a background in PDM. In an environment where products are designed, the focus is around data creation, mostly CAD data. The language around parts in the BOM is mostly targeting design parts. So in a PDM environment CAD data is an important topic – therefore PDM people and companies will talk about CAD data and vaults as the center of information.

erp_bom

When you are working in a PLM environment, you need a way to communicate around a product, through its whole lifecycle, not only the design phase but also supporting manufacturing phases, the possible changes of an existing product through engineering changes, the traceability of as-built data and more. In a PLM environment, people have the physical part (often called the ERP part) in mind, when they talk about a part number.

As PLM covers product information across various departments and disciplines, the information carrier for product information cannot be the CAD data. The BOM, usually the mBOM, is the main structure used to represent and produce the product. Most parts in the mBOM have a relation to a CAD document (in many companies still the 2D drawing). Therefore PLM people and companies understanding PLM will talk about items and products and their lifecycle as their center of information.

CAD data in relation to Engineering to Order

The above generalizations have to be combined with the different main business processes. In a strict Engineering To Order environment, where you design and build a solution only once for a specific customer, there is no big benefit of going through an eBOM and mBOM transition.

During the design process the engineer already has manufacturing in mind, which will be reflected in the CAD structure they build – sometime hybrid representing both engineering and manufacturing items. In such an environment CAD data is leading to build a BOM structure.

And in cases where engineering is done in one single 3D CAD system, the company might use the PDM system from this vendor to manage their Bill of Materials. The advantage of this approach is that PDM is smoothly integrated with the design environment. However it restricts in a certain matter the future as we will see in further reading.

pointNot everyone needs the Engineering to Order process !

Moving to an integrated, multi-disciplinary engineering process or changing the main process from Engineering To Order to Built To Order / Configure To Order will cause major challenges in the company.

I have seen in the recent past, several companies that would like to change their way of working from a CAD centric Engineering To Order process towards a more Built to Order or Configure To Order process. The bottle neck of making this switch was every time that engineering people think in CAD structures and all knowledge is embedded in the CAD data. They now want to configure their products in the CAD system.

For Configure to Order you have to look at a different way to your CAD data:

Questions to ask yourself as a company are:

  • When I configure my products around a CAD structure, what should I do with data from other disciplines (Electrical/Tooling/Supplier data) ?
  • When I upgrade my 3D CAD system to a new version, do I need to convert all old CAD data to the newest versions in order to keep my configurations alive?
  • When configuring a new customer solution, do I need to build my whole product in CAD in order to assure it is complete?
  • In Configure to Order the engineering BOM and manufacturing BOM are different. Does this mean that when I go through a new customer order, all CAD data need to be handled, going through eBOM and mBOM transition again?

For me it is obvious that only in an Engineering to Order environment the CAD data are leading for order fulfillment. In all other typical processes, BTO (Built to Order), CTO (Configure to Order) and MTS (Make to Stock),  product configuration and definition is done around items and the CAD data is important associated data for the product definition and manufacturing

In the case of order fulfillment in a Configure to Order process, the CAD structure is not touched as configuration of the product is available based on items. Each item in the mBOM has it relations to CAD data or other specifying information.

In the case of Built To Order, a huge part of the product is already configured, like in Configure To Order. Only new interfaces or functionality will go through a CAD design process. This new design might be released through a process with an eBOM to mBOM transition. In cases where the impact or the amount of data created in engineering is not huge, it is even possible to configure the changes immediately in an mBOM environment.

old_process A second point, which is also under a lot of discussion in the field ( PLM interest groups), is that PDM is easily to introduce as a departmental solution. The engineering BOM is forwarded to manufacturing and there further (disconnected) processed.  The step from PDM to PLM is always a business change.

When PDM vendors talk about ERP integration, they often mean the technical solution of connecting the two systems, not integrating the processes around the BOM (eBOM/mBOM transition) 0r an integrated engineering change (ECR/ECO). See how easy it is according to some PDM vendors:

or
PLM requires an adaptation of all departments to work different and together around a single product definition. Especially in a mid-market company, this is a big issue, as all product knowledge is stored in the CAD data and the knowledge how to produce the product is stored in the mBOM on the ERP side. These environments are often disconnected.
Conclusion: In the context of PDM the importance of CAD data is clear and for companies following a strict Engineering To Order process the main source of product knowledge. Companies following the Built To Order / Configure To Order process should configure their products around items to keep flexibility towards the future.

Companies with the intention to move to Built To Order or Configure To Order should not invest too much in CAD data configuration as it creates a roadblock for the future.

In my next post I will address the question that comes up from many directions, addressed by Jim Brown and others, as discussed  in one of his recent posts around a PLM standard definition and more ….

%d bloggers like this: