You are currently browsing the tag archive for the ‘Product as a Service’ tag.

After all my writing about The road to model-based and connected PLM, a topic that interests me significantly is the positive contribution real PLM can have to sustainability.

To clarify this statement, I have to explain two things:

  • First, for me, real PLM is a strategy that concerns the whole product lifecycle from conception, creation, usage, and decommissioning.

Real PLM to articulate the misconception that PLM is considered as an engineering infrastructure of even system. We discussed this topic related to this post (7 easy tips nobody told you about PLM adoption) from my SharePLM peers.

  • Second, sustainability should not be equated with climate change, which gets most of the extreme attention.

However, the discussion related to climate change and carbon gas emissions drew most of the attention. Also, recently it seemed that the COP26 conference was only about reducing carbon emissions.

Unfortunately, reducing carbon gas emissions has become a political and economic discussion in many countries. As I am not a climate expert, I will follow the conclusions of the latest IIPC report.

However, I am happy to participate in science-based discussions, not in conversations about failing statistics (lies, damned lies and statistics) or the mixture of facts & opinions.

The topic of sustainability is more extensive than climate change. It is about understanding that we live on a limited planet that cannot support the unlimited usage and destruction of its natural resources.

Enough about human beings and emotions, back to the methodology

Why PLM and Sustainability

In the section PLM and Sustainability of the PLM Global Green Alliance website,  we explain the potential of this relation:

The goals and challenges of Product Lifecycle Management and Sustainability share much in common and should be considered synergistic. Where in theory, PLM is the strategy to manage a product along its whole lifecycle, sustainability is concerned not only with the product’s lifecycle but should also address sustainability of the users, industries, economies, environment and the entire planet in which the products operate.

If you read further, you will bump on the term System Thinking. Again there might be confusion here between Systems Thinking and Systems Engineering. Let’s look at the differences

Systems Engineering

For Systems Engineering, I use the traditional V-shape to describe the process. Starting from the Needs on the left side, we have a systematic approach to come to a solution definition at the bottom. Then going upwards on the right side, we validate step by step that the solution will answer the needs.

The famous Boeing “diamond” diagram shows the same approach, complementing the V-shape with a virtual mirrored V-shape. In this way providing insights in all directions between a virtual world and a physical world. This understanding is essential when you want to implement a virtual twin of one of the processes/solutions.

Still, systems engineering starts from the needs of a group of stakeholders. So it works to the best technical and beneficial solution, most of the time only measured by money.

System Thinking

The image below from the Ellen McArthur Foundation is an example of system thinking. But, as you can see, it is not only about delivering a product.

Systems Thinking is a more holistic approach to bringing products to the market. It is about how we deliver a product to the market and what happens during its whole life cycle. The drivers for system thinking, therefore, are not only focusing on product performance at the most economical price, but we also take into account the impact on resource extraction in the world, the environmental impact during its active life (more and more regulated) and ultimately also how to minimize the waste to the eco-system. This means more recycling or reuse.

If you want to read more about systems thinking more professionally, read this blog post from the Millennium Alliance for Humanity and the Biosphere (MAHB) related to Systems Thinking: A beginning conversation.

Product as a Service (PaaS)

To ensure more responsibility for the product lifecycle, one of the European Green Deal aspects is promoting Product as a Service. There is already a trend towards products as a service, and I mentioned Ken Webster’s presentation at the PLM Roadmap & PDT Fall 2021 conference: In the future, you will own nothing, and you will be happy.

Because if we can switch to such an economy, the manufacturer will have complete control over the product’s lifecycle and its environmental impact. The manufacturer will be motivated to deliver product upgrades, create repairable products instead of dumping old or broken stuff because this is cheap for selling. PaaS brings opportunities for manufacturers, like greater customer loyalty, but also pushes manufacturers to stay away from so-called “greenwashing”. They become fully responsible for the entire lifecycle.

A different type of growth

The concept of Product as a Service is not something that typical manufacturing companies endorse. Instead, it requires them to restructure their business and restructure their product.

Delivering a Product as a Service requires a fast feedback loop between the products in the field and R&D deciding on improving or adding new features.

In traditional manufacturing companies, the service department is far from engineering due to historical reasons. However, with the digitization of our product information and connected products, we should be able to connect all stakeholders related to our products, even our customers.

A few years ago, I was working with a company that wanted to increase their service revenue by providing maintenance as a service on their products on-site. The challenge they had was that the total installation delivered at the customer site was done through projects. There was some standard equipment in their solution; however, ultimately, the project organization delivered the final result, and product information was scattered all around the company.

There was some resistance when I proposed creating an enterprise product information backbone (a PLM infrastructure) with aligned processes.  It would force people to work upfront in a coordinated manner. Now with the digitization of operations, this is no longer a point of discussion.

In this context, I will participate on December 7th in an open panel discussion Creating a Digital Enterprise: What are the Challenges and Where to Start? As part of the PI DX spotlight series. I invite you to join this event if you are interested in hearing various digital enterprise viewpoints.

Doing both?

As companies cannot change overnight, the challenge is to define a transformation path. The push for transformation for sure will come from governments and investors in the following decades. Therefore doing nothing is not a wise strategy.

Early this year, the Boston Consultancy Group published this interesting article: The Next Generation of Climate Innovation, showing different pathways for companies.

A trend that they highlighted was the fact that Shareholder Returns over the past ten years are negative for the traditional Oil & Gas and Construction industries (-18 till -6 %). However, the big tech and first generation of green industries provide high shareholders returns (+30 %), and the latest green champions are moving in that direction. In this way, promoting investors will push companies to become greener.

The article talks about the known threat of disrupters coming from outside. Still, it also talks about the decisions companies can make to remain relevant. Either you try to reduce the damage, or you have to innovate. (Click on the image below on the left).

As described before, innovating your business is probably the most challenging part. In particular, if you have many years of history in your industry. Processes and people are engraved in an almost optimal manner (for now).

An example of reducing the damage could be, for example, what is happening in the steel industry. As making steel requires a lot of (cheap) energy, this industry is powered by burning coal. Therefore, an innovation to reduce the environmental impact would be to redesign the process with green energy as described in this Swedish example: The first fossil-free production of steel.

On December 9th, I will discuss both strategies with Henrik Hulgaard from Configit. We will discuss how Product Lifecycle Management and Configuration Lifecycle Management can play a role in the future. Feel free to subscribe to this session and share your questions. Click on the image to see the details.

Note:  you might remember Henrik from my earlier post this year in January: PLM and Product Configuration Management (CLM)

Conclusion

Sustainability is a topic that will be more and more relevant for all of us, locally and globally. Real PLM, covering the whole product lifecycle, preferably data-driven, allows companies to transform their current business to future sustainable business. Systems Thinking is the overarching methodology we have to learn – let’s discuss

Translate

Email subscription to this blog

Categories

%d bloggers like this: